Химия: Электролитическая диссоциация
Содержание
[убрать]- 1 Электролиты и неэлектролиты
- 2 Теория электролитической диссоциации
- 3 Механизм диссоциации
- 4 Диссоциация кислот, оснований и солей в водных растворах
- 5 Степень диссоциации
- 6 Реакции ионного обмена
- 7 Ионное произведение воды. pH раствора
- 8 Гидролиз солей (разложение водой)
- 9 Буферные растворы
- 10 Роль и практическое применение гидролиза
- 11 Глоссарий
- 12 Библиография
Электролиты и неэлектролиты
Хорошо известно, что одни вещества в растворенном или расплавленном состоянии проводят электрический ток, другие в тех же условиях ток не проводят. Это можно наблюдать с помощью простого прибора.
Он состоит из угольных стержней (электродов), присоединенных проводами к электрической сети. В цепь включена электрическая лампочка, которая показывает присутствие или отсутствие тока в цепи. Если опустить электроды в раствор сахара, то лампочка не загорается. Но она ярко загорится, если их опустить в раствор хлорида натрия. Вещества, распадающиеся на ионы в растворах или расплавах и потому проводящие электрический ток, называются электролитами. Вещества, которые в тех же условиях на ионы не распадаются и электрический ток не проводят, называются неэлектролитами. К электролитам относятся кислоты, основания и почти все соли, к неэлектролитам — большинство органических соединений.
Теория электролитической диссоциации
Для объяснения особенностей водных растворов электролитов шведским ученым С.Аррениусом в 1887 г. была предложена теория электролитической диссоциации. В дальнейшем она была развита многими учеными на основе учения о строении атомов и химической связи. Современное содержание этой теории можно свести к следующим трем положениям:
1. Электролиты при растворении в воде распадаются (диссоциируют) на ионы — положительные и отрицательные. Ионы находятся в более устойчивых электронных состояниях, чем атомы.
Они могут состоять из одного атома — это простые ионы (Na+, Mg2+, Аl3+ и т.д.) — или из нескольких атомов — это сложные ионы (NО3–, SO42– , РО43– и т.д.).
2. Под действием электрического тока ионы приобретают направленное движение: положительно заряженные ионы движутся к катоду, отрицательно заряженные — к аноду. Поэтому первые называются катионами, вторые – анионами. Направленное движение ионов происходит в результате притяжения их противоположно заряженными электродами.
3. Диссоциация — обратимый процесс: параллельно с распадом молекул на ионы (диссоциация) протекает процесс соединения ионов (ассоциация). Поэтому в уравнениях электролитической диссоциации вместо знака равенства ставят знак обратимости. Например:
Механизм диссоциации
- Существенным является вопрос о механизме электролитической диссоциации. Легче всего диссоциируют вещества с ионной связью. Как известно, эти вещества состоят из ионов. При их растворении диполи воды ориентируются вокруг положительного и отрицательного ионов. Между ионами и диполями воды возникают силы взаимного притяжения. В результате связь между ионами ослабевает, происходит переход ионов из кристалла в раствор.
Диссоциация кислот, оснований и солей в водных растворах
С помощью теории электролитической диссоциации дают определения и описывают свойства кислот, оснований и солей.

Диссоциация многоосновной кислоты протекает главным образом по первой ступени, в меньшей степени по второй и лишь в незначительной степени — по третьей. Поэтому в водном растворе, например, фосфорной кислоты наряду с молекулами H3РO4 имеются ионы (в последовательно уменьшающихся количествах)
H3РO4 ![]() |
дигидрофосфат ион; (первая ступень) |
H2РO4– ![]() |
гидрофосфат ион; (вторая ступень) |
РO42– ![]() |
фосфат ион; (третья ступень) |
Степень диссоциации
Поскольку электролитическая диссоциация – процесс обратимый, то в растворах электролитов наряду с их ионами присутствуют и молекулы. Поэтому растворы электролитов характеризуются степенью диссоциации (обозначается греческой буквой альфа α). Степень диссоциации — это отношение числа распавшихся на ионы молекул Ni к общему числу растворенных молекул N:
Степень диссоциации электролита определяется опытным путем и выражается в долях единицы или в процентах. Если α = 0, то диссоциация отсутствует, а если α = 1 или 100%, то электролит полностью распадается на ионы. Если же α = 20%, то это означает, что из 100 молекул данного электролита 20 распалось на ионы.
- Различные электролиты имеют различную степень диссоциации. Опыт показывает, что она зависит от концентрации электролита и от температуры. С уменьшением концентрации электролита.
Реакции ионного обмена
Согласно теории электролитической диссоциации все реакции в водных растворах электролитов являются реакциями между ионами. Они называются ионными реакциями, а уравнения этих реакций — ионными уравнениями. Они проще уравнений реакций, записанных в молекулярной форме, и имеют более общий характер.
Знак ↓ стоящий при формуле вещества, обозначает, что это вещество уходит из сферы реакции в виде осадка, знак ↑ обозначает, что вещество удаляется из сферы реакции в виде газа.
-
Сильные электролиты, как полностью диссоциированные, записывают в виде ионов.Сумма электрических зарядов левой части уравнения должна быть равна сумме электрических зарядов правой части. Для закрепления этих положений рассмотрим пример.
Ионное произведение воды. pH раствора
-
Концентрация молекул воды, учитывая её малую степень диссоциации, величина практически постоянная и составляет (1000 г/л)/(18 г/моль) = 55,56 моль/л.
При 20 - 25 °C константа диссоциации воды равна 1,8·10−16моль/л. Так как вода является слабым электролитом ( амфолитом ), можно записать для неё константу диссоциации из, непосредственно - диссоциации воды
K•[H2O] = [H+] [OH–]
Обозначим произведение K•[H2O] = Kв = 1,8·10−16 моль/л·55,56 моль/л = 10−14моль2/л2 = [H+]·[OH−] (при 25 °C).
Гидролиз солей (разложение водой)
Гидролиз солей – это обменное разложение солей водой. Гидролизу подвергаются только растворимые в воде соли
В процессе гидролиза образуется электролит более слабый, недиссоциируемый, следовательно, более устойчивый, чем гидролизуемая соль. Гидролиз практически возможен лишь в том случае, если один из получаемых электролитов (кислота или основание) более слабый, чем гидролизуемая соль. Гидролиз – это процесс обратный процессу нейтрализации
Наиболее быстро и полно гидролиз происходит в разбавленных растворах.
По степени диссоциации все кислоты и растворимые основания (щелочи) разделяют на сильные и слабые.
Сильные кислоты: HClO4, HClO3, H2SO4, HNO3, HI, HBr, HCl.
Сильные основания (щелочи): CsOH, RbOH, KOH, NaOH, LiOH, Ba(OH)2, Sr(OH)2, Ca(OH)2.
1) Соли, образованные сильной кислотой и сильным основанием гидролизу не подвергаются. При растворении в воде они полностью диссоциируют на положительно заряженные катионы и отрицательно заряженные анионы.
2) Соли, образованные сильной кислотой и слабым основанием гидролизуются с получением кислой среды, рН≤7.
I ступень
CuCl2+HOHCu(OH)Cl+HCl
Cu2+ + 2Cl– + HOHCuOH+ + Cl– + H+ + Cl–
Cu2++HOHCuOH+ + H+
(рН < 7)
II ступень
Cu(OH)Cl + HOH Cu(OH)2↓ + HCl
CuOH+ + Cl– + HOH Cu(OH)2↓ + H+ + Cl–
CuOH+ + HOH Cu(OH)2↓ +H+
(pH ≤ 7) – кислая среда
3) Соли, образованные сильным основанием и слабой кислотой гидролизуются с получением щелочной среды, рН≥7.
I ступень
K2S + HOH KHS + KOH
2K+ + S2– + HOH K+ + HS– + K+ + OH–
S2– +HOH HS– + OH–
(рН > 7)
II ступень
KHS + HOH H2S↑ + KOH
K+ + HS– + HOH H2S↑ + K+ + OH–
HS– + HOH H2S↑ + OH–
(pH ≥ 7) – щелочная среда
4) Соли, образованные слабым основанием и слабой кислотой гидролизуются, если соль растворима. Обычно такие соли
- нерастворимы
- разлагаются при растворении

2NH4+ + S2– 2NH3↑ + H2S↑
- при гидролизе образуется слабое основание и слабая кислота:
CH3COONH4 + HOH CH3COOH + NH4OH
CH3COO– + NH4+ + HOH CH3COOH + NH4OH
Константа диссоциации для уксусной кислоты CH3COOH = 1,8·10-5, константа диссоциации для гидроксида аммония также равна NH4OH = 1,8·10-5. Т.е. численные показатели этих веществ равны, что говорит о получении нейтральной среды при гидролизе ацетата аммония.
Еще рассматривается летучесть аммиака, как газообразного вещества при длительном хранении вещества.
Гидролиз солей может протекать ступенчато. Количество ступеней равно валентности металла в составе соли или валентности кислотного остатка.
Пример (1):
Пример (2):
Представленная модифицированная таблица растворимости солей ориентирована на определение рН среды, которая образуется при гидролизе соли.

Нахождение соли в определенной части таблицы описывает результат гидролиза.
Если соль находится в секторе таблицы, обозначенной цветом:
такая соль будет диссоциировать и не будет подвергаться гидролизу.
гидролиз соли пройдет по кислотному типу и рН будет <7.
гидролиз соли пройдет по щелочному типу и рН при этом будет больше 7.
требует анализа: соль или нерастворима, как большинство солей в этом секторе таблицы или разлагается при растворении в воде. Если соль растворима, то обычно гидролиз приводит к образованию нейтральной среды, когда рН=7,0
Буферные растворы
Способность организма сохранять постоянство состава крови и других жидкостей происходит в результате функционирования буферных систем. В организм поступает и в нем производится множество веществ с различной кислотностью и щелочностью, но сохраняется способность изменять концентрацию ионов H+ и OH- в постоянных пределах pH = 7,37 – 7,44 для крови. Снижение или увеличение этих показателей может привести к смерти.
Буферными называются растворы, обладающие способностью сохранять практически постоянное значение pH при добавлении небольших количеств кислоты или щелочи, а также при разбавлении. Буферные системы состоят из слабого основания и его соли, образованной сильной кислотой. Или из слабой кислоты и ее соли, образованной сильным основанием.
Примеры: NH4OH + NH4Cl pH = 9,2 или CH3COOH + CH3COONa pH=4,7
При добавлении кислоты будут связываться ионы водорода, а при добавлении щелочи – ионы гидроксила. pH раствора изменится незначительно. Способность регулировать pH у буферных растворов регулируется буферной емкостью.
В каждой клетке организма работают разные буферные системы, поддерживающие постоянство внутренней среды.
Роль и практическое применение гидролиза
Обменные реакции между солями и водой широко распространены в природе.
Явление гидролиза играет огромную роль в химическом преобразовании земной коры. Многие минералы земной коры - это сульфиды металлов, которые хотя и плохо растворимы в воде, постепенно взаимодействуют с ней. Такие процессы идут и на поверхности Земли, и особенно интенсивно в ее глубинах при повышенной температуре. В результате образуется огромное количество сероводорода, который выбрасывается на поверхность при вулканической деятельности. А силикатные породы постепенно переходят в гидроксиды, а затем в оксиды металлов. В результате гидролиза минералов – алюмосиликатов – происходит разрушение горных пород.
Известный нам малахит (Cu2(OH)2CO2) – не что иное, как продукт гидролиза природных карбонатов.
В Мировом океане соли также интенсивно взаимодействуют с водой. Выносимые речной водой гидрокарбонаты кальция и магния придают морской воде слабощелочную реакцию. Именно в такой слабощелочной среде прибрежных вод рН приблизительно равно 9, наиболее интенсивно протекает фотосинтез в морских растениях и наиболее быстро развиваются морские животные. А если вспомнить о составе рН крови млекопитающих, в том числе и человека, то вы сможете не только сделать вывод о единстве животного мира на Земле, но и сформулировать и некоторые гипотезы о происхождении жизни на планете.
Гидролиз доставляет немало хлопот нефтяникам. Как известно, в нефти имеются примеси воды и многих солей, особенно хлоридов кальция и магния. При нагревании нефти в процессе ее переработки до 250 oС и выше происходит интенсивное взаимодействие указанных хлоридов с водяным паром. Образующийся при этом газообразный хлороводород вступает в реакцию с металлом, из которого сделано оборудование, разрушает его, что резко увеличивает стоимость нефтепродуктов.
Впрочем, на счету гидролиза немало и добрых дел. Например, образующийся при взаимодействии сульфата алюминия с водой мелкодисперсный осадок гидроксида алюминия уже несколько веков используется в качестве протравы при крашении. Оседая на ткань и прочно соединяясь с ней, гидроксид алюминия затем легко адсорбирует красители и образует весьма устойчивые красящие слои, которые выдерживают многократную стирку ткани. Без протравы качественной окраски тканей не получится.
Этот же процесс используют для очистки питьевой воды и промышленных стоков: рыхлый аморфный осадок гидроксида алюминия обволакивает частички грязи и адсорбирует вредные примеси, увлекая все это на дно. Примерно таков же механизм очистки природной воды глинами, которые представляют собой соединения алюминия.
Гидролиз солей Na2CO3, Na3PO4 применяется для очистки воды и уменьшения ее жесткости.
Известкование почв с целью понижения их кислотности также основано на реакции гидролиза
CO32-+HOHHCO3-+OH+
Посредством гидролиза в промышленности из непищевого сырья (древесины, хлопковой шелухи, подсолнечной лузги, соломы) вырабатывается ряд ценных продуктов: этиловый спирт, белковые дрожжи, глюкоза, сухой лед (CO2).
Глоссарий
- Аквакомплексы – комплексы, включающие в состав молекулы воды – или кристаллогидраты.
- Буфер, буферная система (англ. buffer, от buff – смягчать удар) – растворы с определённой устойчивой концентрацией водородных или гидроксид-ионов.
Библиография
- Химическая энциклопедия, ред. И.Л. Кнунянц, Изд. «Советская энциклопедия», 1-5 т., М., 1988 г.
- Справочник по растворимости. - Т.1, Кн.1. - М.-Л.: ИАН СССР, 1961. – С. 244
- Ефимов А.И. и др. Свойства неорганических соединений. Справочник. - Л.: Химия, 1983. – С. 140-141
- Волков, А.И., Жарский, И.М. Большой химический справочник / А.И. Волков, И.М. Жарский. - Мн.: Современная школа, 2005. - 608 с ISBN 985-6751-04-7.
Шведский физикохимик Сванте Август Аррениус родился в имении Вейк, недалеко от Упсалы.
Аррениус исследовал прохождение электрического тока через многие типы растворов. Он выдвинул предположение, что молекулы некоторых веществ при растворении в жидкости диссоциируют, или распадаются, на две или более частиц, которые он назвал ионами. Несмотря на то, что каждая целая молекула электронейтральна, ее частицы несут небольшой электрический заряд – либо положительный, либо отрицательный, в зависимости от природы частицы. Например, молекулы хлорида натрия (соль) при растворении в воде распадаются на положительно заряженные ионы натрия и отрицательно заряженные ионы хлора. Эти заряженные атомы, активные составные части молекулы, образуются только в растворе и создают возможность для прохождения электрического тока. Электрический ток в свою очередь направляет активные составные части к противоположно заряженным электродам.
Эта гипотеза составила основу докторской диссертации Аррениуса, которую он в 1884 г. представил к защите в Упсальском университете. В то время, однако, многие ученые сомневались в том, что в растворе могут сосуществовать противоположно заряженные частицы, и совет факультета не оценил его диссертацию по достоинству.
Только в 1903 г. Аррениусу была присуждена Нобелевская премия по химии, «как факт признания особого значения его теории электролитической диссоциации для развития химии». Выступая от имени Шведской королевской академии наук, X. Р. Тернеблад подчеркнул, что теория ионов Аррениуса заложила качественную основу электрохимии, «позволив применять к ней математический подход». «Одним из наиболее важных результатов теории Аррениуса, – сказал Тернеблад, – является завершение колоссального обобщения, за которое первая Нобелевская премия по химии была присуждена Вант-Гоффу».
Как стирать содой в стиральной машине? Для этого нужно прямо в барабан насыпать полстакана соды и стирать в обычном режиме. Если белья очень много, можно увеличить объем до стакана. А если добавить еще и стакан белого уксуса, то это усилит дезодорирующий эффект соды.
Выведение пятен при помощи соды
Предлагаем вашему вниманию несколько действенных методик по применению соды для устранения загрязнений:
- Чтобы вывести пятно, надо приготовить содовую пасту: столовую ложку средства перемешать с водой. Можно также вместо воды добавить перекись водорода или уксус. Полученную пасту нанесите на пятно и подождите пятнадцать минут, затем смыть. Если загрязнение не исчезло, повторите процедуру. Можно также попробовать удалить пасту старой зубной щеткой, если пятно сильно въелось. Не стоит только использовать соду из пасты на деликатных тканях;
- Соду можно использовать и для очищения вещей, предназначенных только для сухой чистки. Для этого следует нанести тонкий слой средства на вещь (для удобства хорошо подойдет сито), после этого упаковать в герметичный пакет и оставить на 2 часа. После струсите соду и оставьте вещь на 40 минут на свежем воздухе;
- Чтобы просто избавиться от неприятного запаха и при этом не наносить соду непосредственно на одежду, можно насыпать ее в чистый носок, завязать его, положить в пакет с одеждой, загерметизировать и оставить на ночь в сухом прохладном месте. Утром раскройте пакет и вытряхните соду. Желательно повесить после этого вещь сушиться на солнце и на свежем воздухе на несколько часов. Если необходимо, повторите процедуру;
- Пятна на ковре или скатерти хорошо удаляет сода, гашеная уксусом. Для этого сначала посыпьте ее на пятно, затем смочите тряпочку в уксусе и круговыми движениями от середины к краям разотрите загрязненный участок. Если есть необходимость, повторите процедуру, после чего ополосните обработанное место в чистой воде.
Отбеливание с помощью соды
Можно ли постирать содой и при этом отбелить вещь? Да, для этого идеально подходит смесь: сода и нашатырный спирт. Нужно взять пять литров чистой воды, и развести в ней пять ложек соды и две ложки нашатыря. Замочите в этом растворе вещи белого цвета на три-четыре часа. Потом прополощите и постирайте любым способом. Если после замачивания белье прокипятить в этом растворе полчаса, то это поможет к тому же удалить желтизну.
Как стирать кальцинированной содой?
Обычно, когда упоминается сода, многие думают, что речь идет о пищевой добавке, но есть еще и кальцинированная сода, которая гораздо эффективнее первой. Приобрести ее можно в отделе бытовой химии. Использование кальцинированной соды:
- Для удаления накипи и известкового налета на деталях стиральной машины, а также от неприятного запаха, возникающего при неправильной ее эксплуатации. Для этого нужно смешать средство с водой в соотношении один к одному, нанести полученную смесь на манжету, барабан и лоток для порошка на тридцать минут и убрать с помощью тряпки. Далее включите режим быстрой стирки, не загружая белья;
- Хорошо смягчает воду. Для этого необходимо добавить в порошок две столовые ложки средства (при большой степени жесткости можно использовать пять ложек). Температура воды при этом должна быть не ниже пятидесяти градусов. Эта процедура к тому же предотвратит образование накипи. Только это не подходит для стирки шелковых и шерстяных вещей;
- Для замачивания белья. Возьмите 3 столовые ложки средства и растворите их в десяти литрах воды температурой сорок градусов. Положите вещи в получившийся раствор. Через два-три часа постирайте любым способом;
- Для эффективной стирки кухонных полотенец отлично подходит следующий рецепт: горсть средства смешать с тертым хозяйственным мылом и положить смесь в эмалированное ведро, наполовину наполненное водой. После растворения смеси положите туда полотенца и закипятите на медленном огне минут двадцать. Потом постирайте в машинке как обычно;
- Еще более эффективно отстирать жирные пятна на полотенцах поможет смесь соды, растительного масла, отбеливателя и порошка. Возьмите по 3 столовые ложки каждого ингредиента, засыпьте в ведро с кипятком воды и положите туда полотенца. Пусть они полежат там до полного остывания. Можно оставить и на ночь. Ополосните в чистой теплой воде и постирайте в машинке.
Универсальное чистящее средство с содой
Можно самим сделать средство впрок, которое подойдет как для мытья посуды, так и для чистки сантехники. Для этого нужно:
- детское мыло, натертое на терке,
- налить стакан воды,
- потом взбить,
- добавить еще стакан, и постепенно добавляя 250 граммов соды,
- опять взбить.
Полученной пастой можно удалять даже известь.
Другие рецепты различных чистящих средств на основе соды
С использованием средства можно приготовить также:
- смесь для мытья посуды;
- гель для стирки;
- средство для чистки ванны.
Чтобы сделать гель для мытья посуды, возьмите хозяйственное мыло (двадцать пять граммов), 100 грамм пищевой соды, пол-литра горячей воды, четыре ложки глицерина и одну ложку водки или разведенного спирта. Натрите мыло на терке, влейте небольшое количество воды и поставьте в микроволновку. Постоянно помешивая, вливайте оставшуюся воду. После растворения мыла, дайте ему остыть, добавьте глицерин с водкой и перемешайте. Снимите образовавшуюся пену, влейте в специальную емкость и пользуйтесь.
Для получения геля для стирки надо взять литр воды, пятьдесят граммов тертого хозяйственного мыла и сорок пять граммов кальцинированной соды. Поместите в кипящую воду мыльную стружку, хорошо перемешивая ее при этом. Затем добавьте соду, и тоже все перемешайте, пока она не растворится. На пять килограммов белья берется две столовые ложки готового геля и помещается в барабан.
Средство для чистки ванны можно изготовить из смеси половины стакана соды, жидкого мыла и пяти капель масла розмарина или лаванды. Перемешайте соду с мылом и добавьте масло. Чтобы смесь не засохла, нужно добавить туда чайную ложку глицерина и плотно закрыть.
22 марта во всем мире отмечается День водных ресурсов. Этот праздник был установлен по решению Генеральной Ассамблеи Организации Объединенных Наций, чтобы напомнить человечеству о важности водных ресурсов для окружающей среды и развития общества.
В настоящее время 70% территории нашей планеты покрыты водой. При этом пить можно только 1% этой воды. С каждым годом проблема доступа к водным ресурсам становится острее. За последние 50 лет в мире произошло целых 507 конфликтов, связанных с доступом к воде. 21 спор привел к военным действиям.
Вода – самое простое и привычное вещество на планете. Но в то же время она таит в себе множество загадок. Ее до сих пор продолжают исследовать ученые, находя все больше интересных данных о воде.
Знаете ли вы, что
самая чистая вода в Финляндии?
По данным ЮНЕСКО, самая чистая вода находится в Финляндии. Всего в исследовании свежей природной воды принимало участие 122 страны. При этом 1 млрд людей по всему миру вообще не имеет доступа к безопасной воде.
лед быстрее получить из горячей воды?
Если рассуждать логически, то, конечно, холодная. Ведь горячей нужно сначала остыть, а потом уже замерзнуть, а вот холодной остывать не нужно. Однако опыты показывают, что в лед быстрее превращается именно горячая вода.
Точного ответа на вопрос, почему все-таки горячая вода замерзает быстрее холодной, до сих пор не существует. Возможно, дело в разнице в переохлаждении, испарении, образовании льда, конвекции, либо причина в воздействии разжиженных газов на горячую и холодную воду.
существует сверхохлаждение воды?
Все хорошо помнят из школьного курса физики, что вода замерзает при 0 градусов, а при 100 градусах закипает. Однако существует так называемое сверхохлаждение воды. Таким свойством обладает очень чистая вода – без примесей. Даже при охлаждении ниже точки замерзания такая вода остается жидкой. Но и в том, и в другом случае существуют температуры, при которых вода станет льдом или закипит.
у воды более 3 агрегатных состояний?
Еще со школы все знают, что у воды есть 3 агрегатных состояния: твердое, жидкое и газообразное. Однако ученые выделяют 5 различных состояний воды в жидком виде и 14 состояний в замерзшем виде.
Что будет, если, например, взять замерзшую чистую воду и продолжить охлаждение? С водой произойдут чудесные превращения. При минус 120 градусах по Цельсию вода становится сверхвязкой или тягучей, а при температуре ниже минус 135 градусов она превращается в "стеклянную" воду. "Стеклянная" вода – это твердое вещество, в котором отсутствует кристаллическая структура, как в стекле.
Классы снежинок по Международной классификации снега.
© А. К. Дюнин, В царстве снега, Издательство «Наука», Новосибирск, 1983
-
Пластинки
Самые простые из снежинок — плоские шестиугольные призмы. -
Звезды
Как и пластинки, звезды обычно плоские и тонкие, с шестью лучами. -
Столбики
Полые внутри, могут иметь форму карандаша. -
Иглы
Длинные и тонкие кристаллы, иногда состоят из нескольких веточек. -
Пространственные дендриты
Объемные снежинки, образуются при срастании нескольких кристаллов. -
Увенчанные столбики
Образуются в случае, если столбики попадают в иные условия, и кристаллы меняют направление роста. -
Неправильные кристаллы
Самый распространенный тип. Образуется при повреждении снежинки.
© Kichigin | Shutterstock.com