БИЛИМ БУЛАГЫ

KR

Математика: Катыш жана пропорция

Версия от 15:25, 21 мая 2018; Msu05 (обсуждение | вклад) (Пропорции вокруг нас)

Пропорция жөнүндө окуп-үйрөнүүнүн өнүгүү тарыхы

Сулуулуктан бөлөк эч нерсе жакпайт, а сулуулукта- эч нерсе, формадан бөлөк, формада- эч нерсе,

    пропорциядан бөлөк, пропорцияда эч нерсе, сандардан бөлөк.
                                                     Аврелий Августин

Пропорция түшүнүгү бүтүн сан үчүн эки сандын катышынын барабардыгы катары байыркы заманда эле берилген. Байыркы вавилондуктар дагы бүтүн сандар менен туюнтулган үч бурчтуктардын жактарынын пропорционалдуулугу түшүнүгүнө келишкен.

Кесиндини четки жана ортоңку катышынан кесүүдө келип чыккан пропорцияга карата алгачкы кызыгуулар антикалык илимдерде эле пайда болгон .

Байыркы Грецияда даңталган чыгармачылык искусствосунун, архитектурасынын, ар кандай кол өнөрчүлүктөрдүн доорунда өзгөчө ийгиликтүү өнүккөн. Пропорция менен сулуулукту даңазалоо, тартип жана гармония, музыкадагы үн коштоочу аккорддорду байланыштырышкан. Алтын бөлүнүш жөнүндө түшүнүгүн колдонууну байыркыгрек философу жана математиги Пифагор киргизген. Ал жана анын окуучулары пропорциянын үч түрүн карашкан:

  • Арифметикалык: а - b = с - d
  • Геометрикалык: a : b = c : d
  • Гармоникалык: a : b = b : (a - b)

Башка байыркы грек окумуштуусу Платон пропорциянын маңызын мында: «эки жакты үчүнчү менен бириктирүү, аларды бир бүтүнгө «бекемдөө» үчүн пропорция керек. Мында бүтүндүн бир бөлүгү башкага бүтүндүн чоң бөлүгүнө мамиле кылгандай болуу керек. Мындай пропорция гармониялык биригүүгө жооп берет жана ал алтын болуп саналат».

Байыркы грек окумуштуусу Евдокс бүтүн сандарга гана эмес ошондой эле бөлчөк сандарга дагы колдонула турган пропорция жөнүндөгү систематикалык окууну берген. Катуу талаптуу пропорциянын теориясы биздин кылымга чейинки 3 кылымда байыркы грек геометриги Евклиддин белгилүү «Башталышында» берилген, ал 13 китептен турган. Бул теорияга ал 5 китепти арнаган. Евклид өзүнүн теориясынын негизин Евдокстун окууларынан алган. Азыркы убакта пропорциянын теориясы Евдокс – Евклиддин теорияларынан аз эле айырмаланат. Евклид пропорциялар арасындагы салыштырууну аныктаган: a : b катышы, c : d катышынан кичине, эгерде m жана n сандары болсо, эгерде ma > nb жана ошол эле убакта mc ≤ nd. А бул мындайча окулат: Бул факт таң калаарлык, анда «пропорция» сөзүн пайдаланууга байыркы рим коомдук ишмери МаркТу́ллийЦицеро́н киргизген.

Ал латынчага платон термини «аналогия» ны которгон, ал сөзмө-сөз «кайрадан -мамиле» дегенди билдирген, же биз азыр айтып жаткандай «катыш».


Негизги түшүнүктөр

Пропорция (лат. proportio — соразмерность, выровненность частей) – это равенство двух отношений: Пропорция a b cd.png или a:b=c:d, где a,b,c,d – не равны нулю, a и d называют крайними членами пропорции, b и c – средними членами пропорции.}}

Например, рассмотрим равенство 12 : 20 = 3 : 5.

Бул пропорция, акыркы мүчөлөрү 12 жана 5 ке барабар, ортоңку мүчөлөрү 20 жана 3. Пропорция мындайча окулат: он эки жыйырмага карайт, үч бешке карагандай.

Пропорциянын негизги касиеттери: пропорциянын акыркы мүчөлөрүнүн көбөйтүндүсү анын ортоңку мүчөлөрүнүн көбөйтүндүсүнө барабар.

Бул болсо,эгерде Пропорция a b cd.png, анда ad = bc.

Карама-каршы ырастоо дагы туура: эгерде эки сандын көбөйтүндүсү a жана d эки башка сандын көбөйтүндүсүнө барабар болсо b жана c (a≠0,b≠0,c≠0,d≠0), анда бул сандар менен Пропорция a b cd.png пропорциясын түзсөк болот.

Пропорциянын негизги касиетинен келип чыгат, пропорциянын акыркы мүчөлөрү, пропорциянын акыркы белгилүү мүчөсүнө бөлүнгөн ортоңку мүчөлөрдүн көбөйтүндүсүнө барабар.

Пропорцияга мисалдар жана тапшырмалар

1-тапшырма Пропорциянын белгисиз мүчөсүн тапкыла.

2-тапшырма Китепканадагы 300 окурмандын 108 и- студенттер. Бардык окурмандардын канча процентин студенттер түзөт?

3-тапшырма Кыям кайнатууда жемиш менен кумшекер 5:2 катышта колдонулат. Эгерде 450 грамм кумшекер алсак канча жемиш керек болот?

  • Задание 1.gif
  • 2-тапшырма..gif
  • 3-тапшырма..gif

Түз жана кыйыр пропорционалдуулук

Две взаимно зависимых величины называются пропорциональными, если отношение их величин сохраняется неизменным. Это постоянное отношение пропорциональных величин называется коэффициентом пропорциональности.

Пример. Масса любого вещества пропорциональна его объёму. Например, 2 литра ртути весят 27.2 кг, 5 литров весят 68 кг, 7 литров весят 95.2 кг. Отношение массы ртути к её объёму (коэффициент пропорциональности) будет равно:

Плотность ртути1.png
Плотность ртути1.png

Таким образом, коэффициентом пропорциональности в данном примере является плотность.

Пропорциональность. Это простейший вид функциональной зависимости. Различают прямую пропорциональность. (y=kx) и обратную пропорциональность (y=k/x). Напр., путь S, пройденный при равномерном движении со скоростью v, пропорционален времени t, т. е. S=vt ; прямо пропорциональна величина основания y прямоугольника с заданной площадью a обратно пропорциональна высоте x, т. е. y=a/x.

Свойства пропорциональности

Свойства прямой пропорциональной зависимости.

1. Каждому значению х соответствует единственное определенное значение у. (первое свойство прямой пропорциональной зависимости)

2. Отношение соответствующих значений величин у и х, связанных прямой пропорциональностью, равно коэффициенту пропорциональности.

3. Если две величины связаны между собой прямой пропорциональной зависимостью, то при увеличении (уменьшении) одной из них в несколько раз значение другой увеличивается (уменьшается) во столько же раз.

Математической моделью прямой пропорциональной зависимости величин х и у является формула у = кх.

Свойства обратной пропорциональной зависимости.

1. Каждому значению х (за исключением х=0) соответствует вполне определенное значение у.

2. Произведение соответствующих значений х и у равно коэффициенту обратной пропорциональности.

3. Если х увеличивается (уменьшается) в несколько раз, то у уменьшается (увеличивается) во столько же раз, так как их произведение остается неизменным.

Если х и у связаны обратной пропорциональной зависимостью, то отношение двух любых значений величины х равно обратному отношению соответствующих значений y: x1:x2=y2:y1.

Маселени чыгаруу

1-маселе Велосипедист туруктуу ылдамдык менен 10 минутада 5 км басып өткөн. 45 минутада канча жол басып өтөт?

2-маселе Автомашина 2 саатта ылдамдыгы 75 км/саат жүргөн. Эгерде ал ушул эле убакытта ылдамдыгы 90км/саат жүрсө канча аралыкты басып өтөт?

  • Задача 1.gif
  • Задача 2.gif

Алтын кесилиш

         Геометрия эки кенге ээ: анын бири- Пифагордун теоремасы, 
            экинчиси-кесиндилерди ортоңку жана акыркы катыштарга бөлүү... 
            Биринчисин алтындын өлчөмү менен салыштырууга болот, а экинчиси баалуу ташка окшош.  
                                                        Иоганн Кеплер

Түз кесиндини эки барабар бөлүккө, ошондой эле эки барабар эмес бөлүккө каалагандай катышта бөлүүгө болот. Акыркысын алтын бөлүү десек болот же кесиндини акыркы жана ортоңку катышта бөлүү.

Алтын кесилиш - бул кесиндини барабар эмес бөлүктөргө пропорционалдуу бөлүү, мында бүт кесинди чоң бөлүккө карайт, ал эми чоң бөлүктүн өзү кичинекейге карайт; же башкача айтканда, кичинекей кесинди ушундай эле чоңго карайт, чоң бардыгына карагандай: a : b = b : c же с : b = b : а.

Деление отрезка.gif
Деление отрезка.gif

Алтын кесилиш менен практика жүзүндө таанышууну кесиндини түз алтын пропорцияда циркулдун жана сызгычтын жардамы менен бөлүүдөн башташат.

Алтын пропорциянын кесиндилери чексиз ирроционалдык бөлчөктөр менен туюнтулат AE = 0,618..., эгерде AB бирдик деп кабыл алсак, BE = 0,382...

Практикалык максатта көбүнчө жакындатылган мани 0,62 жана 0,38 ди пайдаланышат. Эгерде АВ кесиндисин 100 бөлүк деп кабыл алса, анда кесиндинин чоң бөлүгү 0,62 ге барабар, а кичинекей бөлүгү -38 бөлүккө. Алтын кесилиштин касиетин бул сандын айланасында түзүшкөн романтикалык сырдуулуктун ореолу жана араң эле мистикалык таазим этүү эмес.

Деление отрезка прямой по золотому сечению.gif
Деление отрезка прямой по золотому сечению.gif

Пифагор алтын бөлүү билимин египеттиктер менен вавилондуктардан алган деген божомол бар. Чындыгында эле Хеопс пирамидасы, храмдар, барельефтери, турмуштагы предметтер жана Тутанхамон көрүстөнүндөгү жасалгалар египеттик чеберлердин аларды түзүүдө алтын кесилиш катышын пайдалангандары күбө болуп турат. Француз архитектору Шарль Эдуард Ле Корбюзье Абидостогу Сети I фараонунун ибадатканасынын рельефинен жана Рамзес фараонунун сүрөттөлүшүндө фигуралардын пропорциясы алтын бөлүү чоңдугуна дал келээрин тапкан. Хесира көрүстөнүндөгү жыгач тактага түзүрүлгөн Зодчийдин рельефинде, колунда алтын бөлүү пропорциясын бекитүүчү ченөө инструменттерин кармап турат. Гректер акылдуу геометрлар болушкан. Алар балдарына арифметиканы дагы геометриялык фигуралардын жардамы менен окутушкан. Пифагордун квадраты жана ал квадраттын диагоналы динамикалык тик бурчтукту түзүү үчүн негиз болгон.

Байыркы грек Парфенон храмынын фасадында алтын пропорция бар. Аны касууда байыркы (античный) дүйнөнүн архитекторлору жана скульпторлору пайдаланган циркульдар табылган. Помпеядагы колдонулган циркульга дагы алтын бөлүү пропорциясы мүнөздүү. Алтын кесилиш терминин Леонардо да Винчи (1452-1519-жж) киргизген.

  • Шарль Эдуард Ле Корбюзье
  • Храм_фараона_Сети_I
  • Фараон_Сети_I_и_бог_Анубис._Рельеф_из_храма_Сети_I_в_Абидосе
  • Зодчий_на_рельефе_гробницы_Хесира
  • Парфенон
  • Античный_циркуль

Пропорциональность в природе, искусстве, архитектуре означает соблюдение определенных соотношений между размерами отдельных частей растения, скульптуры, здания и является непременным условием правильного и красивого изображения предмета.

Алтын кесилиштин пропорциясына геометриялык фигура негизделет. Жактарынын ушундай катыштагы тик бурчтугу алтын тик бурчтук деген аталышка ээ болгон. Разумеется есть и золотой треугольник. Это равнобедренный треугольник, у которого отношение длины боковой стороны к длине основания равняется 1,618.


Бизди курчаган пропорциялар

Скрипканын добушу, анын үнүнүн сулуулугу кайсы бир өлчөмдө инструменттин формасынын алтын кесилиш пропорциясы менен келишиминен түз көз каранды. Музыкалык чыгармалардын Бахадан Шостаковичке чейинки диапозонунун анализи музыкалык формалардын негизги метрдик катыштарын жана ошондой эле алтын кесилишти көрсөткөн. Ошентип, гармония закону музыкалык тизмекте, Менделеевдин таблицасында, планеталар ортосундагы аралыкта, микро- жана макрокосмосто, илимдин көптөгөн тармактарында табылган. Скульптура, архитектура, астрономия, биология, техника, психология, ж.б.- бардык жактарда алтын кесилиш өзүн көрсөтүүдө.


Полезные ссылки


Глоссарий

Отношение – это частное от деления одного числа на другое.

Пропорция – это равенство двух отношений.

Чи́сла Фибона́ччи — элементы числовой последовательности 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, …, в которой первые два числа равны либо 1 и 1, либо 0 и 1, а каждое последующее число равно сумме двух предыдущих чисел.

Золотое сечение (золотая пропорция, деление в крайнем и среднем отношении, гармоническое деление) — соотношение двух величин b и a, a > b, когда справедливо a/b = (a+b)/a. Число, равное отношению a/b, обычно обозначается прописной греческой буквой Φ, в честь древнегреческого скульптора и архитектора Фидия.Число Φ называется также золотым числом.


Библиография


Как построить «Золотой дом» для себя?
Золотой Храм в Амритсаре. Индия


Правильное распределение энергий внутри дома, гармоничные конструкции в сочетании с экологией и безопасностью строительных материалов побуждают современных архитекторов и дизайнеров использовать принципы и понятия «Золотого сечения». Это увеличивает смету и создаёт впечатление глубокой проработки проекта. Стоимость возрастает на 60-80%.

Для талантливых художников и архитекторов правило сохраняется интуитивно во время творческого процесса. Однако некоторые из них сознательно реализуют это положение.

Известный французский архитектор Шарль Эдуард Ле Корбюзье для расчёта параметров будущего дома и интерьера использовал в качестве отправной единицы рост хозяина. Все его работы по-настоящему индивидуальны и гармоничны.

  • Здание Ассамблеи в Чандигархе. Индия
  • Здание Ассамблеи в Чандигархе. Индия
  • Здание Ассамблеи в Чандигархе. Индия

В доме, построенном без учёта соотношения, можно сделать перепланировку комнат, чтобы пропорции соответствовали. Для этого достаточно переставить мебель или сделать дополнительную перегородку. Аналогичным образом меняется высота и длина окон и дверей.

Шкаф-перегородка


В цветовом оформлении получение упрощённого соотношения достигается за счёт 60% основного цвета, 30% — оттеняющего, и остальных 10% — усиливающих восприятие тонов.

Вариант освещения комнаты


Высота и длина мебели должна соизмеряться высотой потолков и шириной простенков.

Приложение этой нормы в интерьере, как архитектурно оформленном пространстве, объединяют с понятиями самоорганизации, рекурсии, асимметрии, красоты.


Золотая архитектура Кыргызстана

Архитектурные комплексы, которые расположены на территории Кыргызстана, занимают значительное место в истории зодчества народов Центральной Азии, соединив в себе лучшие достижения в области строительной техники, архитектуры и декоративного оформления своего времени.

  • Белый дом. Здание Жогорку Кенеш
  • Бишкекский Гуманитарный Университет имени К.Карасаева
  • Гумбез Манаса. Талас
  • Башня Бурана
  • Джалал-Абад
  • Дунганская мечеть в городе Каракол
  • Караван-сарай Таш-Рабат
  • Кыргызская Государственная Филармония имени Токтогула Сатылганова
  • Кыргызский государственный цирк имени А.Изибаева
  • Кыргызский национальный академический театр оперы и балета имени Абдыласа Малдыбаева
  • Мавзолей караханидов XI–XIIв.в.
  • Мавзолей Шах-Фазиль
  • Международный университет Кыргызстана
  • Мечеть в городе Нарын
  • Мэрия города Бишкек
  • Площадь Ала-Тоо в городе Бишкек
  • Площадь Ала-Тоо в городе Бишкек
  • Минарет в городе Узген
  • Центральный портал мавзолея караханидов XI–XII в.в.
Ыр саптары

Пропорциянын эң башкы эрежеси

Баардыгы билип эстеп калуу керек

Ортоңку мүчөлөрүн четкилерине көбөйтсөк

Бул мүчөлөрү дайыма тең болот.