БИЛИМ БУЛАГЫ

KR

Математика: Катыш жана пропорция

История развития учения о пропорции

          Ничто не нравится, кроме красоты, в красоте – ничто, кроме форм, в формах – ничто, 
             кроме пропорций, в пропорциях – ничто, кроме числа.
                                                           Аврелий Августин
Понятие пропорции как равенства двух отношений чисел для целых чисел было дано в глубокой древности. Еще древние вавилоняне пришли к понятию пропорциональности сторон подобных треугольников, выраженных в целых числах.

Впервые интерес к пропорции, образующейся при делении отрезка в крайнем и среднем отношении, возникает в античной науке.

Так в Древней Греции, славившейся произведениями искусства, архитектуры, различными ремеслами, успешно развивалось учение об отношениях и пропорциях. С ними связывались представления о красоте, порядке и гармонии, о созвучных аккордах в музыке. Принято считать, что понятие о делении отрезка ввел в научный обиход Пифагор, древнегреческий философ и математик. Он и его ученики рассматривали три вида пропорций:

  • Арифметическую: а - b = с - d
  • Геометрическую: a : b = c : d
  • Гармоническую: a : b = b : (a - b)

Другой древнегреческий ученый Платон сводил сущность пропорции к тому, что «для соединения двух частей с третьей совершенным образом необходима пропорция, которая бы «скрепила» их в единое целое. При этом одна часть целого должна так относиться к другой, как целое к большей части. Такая пропорция отвечает гармоническому соединению, она и является золотой».

А древнегреческий ученый Евдокс дал систематическое учение о пропорциях применительно не только к целым, но и к дробным числам. Строгая теория пропорций была построена в 3 веке до н.э. древнегреческим геометром Евклидом в его знаменитых «Началах», состоящих из 13 книг. Этой теории он посвящает 5 книг. В основу своей теории Евклид положил учение Евдокса. В настоящее время теория пропорций мало отличается от теории Евдокса – Евклида. Евклид определяет сравнение между пропорциями: отношение a : b меньше, чем отношение c : d, если есть такие числа m и n, если ma > nb и в то же время mc ≤ nd. А читается она так: «В верной пропорции произведение крайних членов равно произведению средних». Математические свойства пропорции уже тогда создавали вокруг нее ореол таинственности и мистического поклонения. Удивителен тот факт, что слово «пропорция» ввел в употребление древнеримский политический деятель Марк Ту́ллий Цицеро́н.

Он перевел на латынь платоновский термин «аналогия», который буквально означал «вновь-отношение», или, как мы говорим, «соотношение».


Основные понятия

Пропорция (лат. proportio — соразмерность, выровненность частей) – это равенство двух отношений: Пропорция a b cd.png или a:b=c:d, где a,b,c,d – не равны нулю, a и d называют крайними членами пропорции, b и c – средними членами пропорции.}}

Например, рассмотрим равенство 12 : 20 = 3 : 5.

Это пропорция, в которой крайние члены равны 12 и 5, а средними членами являются числа 20 и 3. Читается пропорция так: двенадцать относится к двадцати, как три относится к пяти.

Основное свойство пропорции: произведение крайних членов пропорции равно произведению её средних членов.

Это означает, что если Пропорция a b cd.png, то ad = bc.

Верно и обратное утверждение: если произведение двух чисел a и d равно произведению двух других чисел b и c (a≠0,b≠0,c≠0,d≠0), то из этих чисел можно составить пропорцию Пропорция a b cd.png.

Из основного свойства пропорции следует, что крайний член пропорции равен произведению средних членов, деленному на известный крайний член пропорции. А средний член пропорции равен произведению крайних членов, деленному на известный средний член пропорции.

Задачи и задания на пропорции

Задание 1. Найдите неизвестный член пропорции.

Задание 2. Из 300 читателей библиотеки 108 человек – студенты. Какой процент всех читателей составляют студенты?

Задание 3. При варке варенья используют ягоды и сахар в отношении 5:2. Сколько надо ягод, если взяли 450 грамм сахара?

  • Задание 1.gif
  • Задание 2.gif
  • Задание 3.gif

Прямая и обратная пропорциональность

Две взаимно зависимых величины называются пропорциональными, если отношение их величин сохраняется неизменным. Это постоянное отношение пропорциональных величин называется коэффициентом пропорциональности.

Пример. Масса любого вещества пропорциональна его объёму. Например, 2 литра ртути весят 27.2 кг, 5 литров весят 68 кг, 7 литров весят 95.2 кг. Отношение массы ртути к её объёму (коэффициент пропорциональности) будет равно:

Плотность ртути1.png
Плотность ртути1.png

Таким образом, коэффициентом пропорциональности в данном примере является плотность.

Пропорциональность. Это простейший вид функциональной зависимости. Различают прямую пропорциональность. (y=kx) и обратную пропорциональность (y=k/x). Напр., путь S, пройденный при равномерном движении со скоростью v, пропорционален времени t, т. е. S=vt ; прямо пропорциональна величина основания y прямоугольника с заданной площадью a обратно пропорциональна высоте x, т. е. y=a/x.

Свойства пропорциональности

Свойства прямой пропорциональной зависимости.

1. Каждому значению х соответствует единственное определенное значение у. (первое свойство прямой пропорциональной зависимости)

2. Отношение соответствующих значений величин у и х, связанных прямой пропорциональностью, равно коэффициенту пропорциональности.

3. Если две величины связаны между собой прямой пропорциональной зависимостью, то при увеличении (уменьшении) одной из них в несколько раз значение другой увеличивается (уменьшается) во столько же раз.

Математической моделью прямой пропорциональной зависимости величин х и у является формула у = кх.

Свойства обратной пропорциональной зависимости.

1. Каждому значению х (за исключением х=0) соответствует вполне определенное значение у.

2. Произведение соответствующих значений х и у равно коэффициенту обратной пропорциональности.

3. Если х увеличивается (уменьшается) в несколько раз, то у уменьшается (увеличивается) во столько же раз, так как их произведение остается неизменным.

Если х и у связаны обратной пропорциональной зависимостью, то отношение двух любых значений величины х равно обратному отношению соответствующих значений y: x1:x2=y2:y1.

Решение задач

Задача 1. Велосипедист, двигаясь с постоянной скоростью, проехал 5 км за 10 минут. Какой путь проедет велосипедист за 45 минут?

Задача 2. Автомобиль ехал 2 часа со скоростью 75 км/ч. За какое время он продет это же расстояние, если будет ехать со скоростью 90 км/ч?

  • Задача 1.gif
  • Задача 2.gif

Золотое сечение

         Геометрия имеет два сокровища: одно из них – Пифагорова теорема, 
            а второе – деление отрезка в среднем и крайнем отношениях... 
            Первое из них можно сравнить с мерой золота, а второе похоже на драгоценный камень. 
                                                        Иоганн Кеплер

Отрезок прямой можно разделить, как на две равные части, так и на две неравные части в любом отношении. Последнее и есть золотое деление или деление отрезка в крайнем и среднем отношении.

Золотое сечение – это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части, как сама большая часть относится к меньшей; или другими словами, меньший отрезок так относится к большему, как больший ко всему: a:b=b:c или с:b=b:а

Деление отрезка.gif
Деление отрезка.gif

Практическое знакомство с золотым сечением начинают с деления отрезка прямой в золотой пропорции с помощью циркуля и линейки.

Отрезки золотой пропорции выражаются бесконечной иррациональной дробью AE = 0,618..., если AB принять за единицу, BE = 0,382...

Для практических целей часто используют приближенные значения 0,62 и 0,38. Если отрезок АВ принять за 100 частей, то большая часть отрезка равна 62, а меньшая – 38 частям. Свойства золотого сечения создали вокруг этого числа романтический ореол таинственности и чуть ли не мистического поклонения.

Деление отрезка прямой по золотому сечению.gif
Деление отрезка прямой по золотому сечению.gif

Существует предположение, что знание золотого деления Пифагор позаимствовал у египтян и вавилонян. И действительно, пропорции пирамиды Хеопса, храмов, барельефов, предметов быта и украшений из гробницы Тутанхамона свидетельствуют, что египетские мастера пользовались соотношениями золотого деления при их создании. Французский архитектор Шарль Эдуард Ле Корбюзье нашел, что в рельефе из храма фараона Сети I в Абидосе и в рельефе, изображающем фараона Рамзеса, пропорции фигур соответствуют величинам золотого деления. Зодчий, изображенный на рельефе деревянной доски из гробницы Хесира, держит в руках измерительные инструменты, в которых зафиксированы пропорции золотого деления. Греки были искусными геометрами. Даже арифметике обучали своих детей при помощи геометрических фигур. Квадрат Пифагора и диагональ этого квадрата были основанием для построения динамических прямоугольников.

В фасаде древнегреческого храма Парфенона присутствуют золотые пропорции. При его раскопках обнаружены циркули, которыми пользовались архитекторы и скульпторы античного мира. В циркуле, который использовали в Помпеях, также заложены пропорции золотого деления. А термин золотое сечение ввел Леонардо да Винчи (1452-1519 гг)

  • Шарль Эдуард Ле Корбюзье
  • Храм_фараона_Сети_I
  • Фараон_Сети_I_и_бог_Анубис._Рельеф_из_храма_Сети_I_в_Абидосе
  • Зодчий_на_рельефе_гробницы_Хесира
  • Парфенон
  • Античный_циркуль

Пропорциональность в природе, искусстве, архитектуре означает соблюдение определенных соотношений между размерами отдельных частей растения, скульптуры, здания и является непременным условием правильного и красивого изображения предмета.

На этой пропорции базируются основные геометрические фигуры. Прямоугольник с таким отношением сторон стали называть золотым прямоугольником. Разумеется есть и золотой треугольник. Это равнобедренный треугольник, у которого отношение длины боковой стороны к длине основания равняется 1,618.


Пропорции вокруг нас

Певучесть скрипки, красота ее голоса находится в прямой зависимости от того, в какой мере форма инструмента согласована с пропорцией золотого сечения. Анализ музыкальных произведений в диапазоне от Баха до Шостаковича продемонстрировал метрические отношения основных разделов музыкальных форм, а также золотое сечение. Таким образом, законы гармонии обнаружены в музыкальных рядах, в таблице Менделеева, в расстояниях между планетами, в микро- и макрокосмосе, во многих областях науки. Скульптура, архитектура, астрономия, биология, техника, психология и т. д. – везде так или иначе проявляет себя золотое сечение.


Полезные ссылки


Глоссарий

Отношение – это частное от деления одного числа на другое.

Пропорция – это равенство двух отношений.

Чи́сла Фибона́ччи — элементы числовой последовательности 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, …, в которой первые два числа равны либо 1 и 1, либо 0 и 1, а каждое последующее число равно сумме двух предыдущих чисел.

Золотое сечение (золотая пропорция, деление в крайнем и среднем отношении, гармоническое деление) — соотношение двух величин b и a, a > b, когда справедливо a/b = (a+b)/a. Число, равное отношению a/b, обычно обозначается прописной греческой буквой Φ, в честь древнегреческого скульптора и архитектора Фидия.Число Φ называется также золотым числом.


Библиография


Как построить «Золотой дом» для себя?
Золотой Храм в Амритсаре. Индия


Правильное распределение энергий внутри дома, гармоничные конструкции в сочетании с экологией и безопасностью строительных материалов побуждают современных архитекторов и дизайнеров использовать принципы и понятия «Золотого сечения». Это увеличивает смету и создаёт впечатление глубокой проработки проекта. Стоимость возрастает на 60-80%.

Для талантливых художников и архитекторов правило сохраняется интуитивно во время творческого процесса. Однако некоторые из них сознательно реализуют это положение.

Известный французский архитектор Шарль Эдуард Ле Корбюзье для расчёта параметров будущего дома и интерьера использовал в качестве отправной единицы рост хозяина. Все его работы по-настоящему индивидуальны и гармоничны.

  • Здание Ассамблеи в Чандигархе. Индия
  • Здание Ассамблеи в Чандигархе. Индия
  • Здание Ассамблеи в Чандигархе. Индия

В доме, построенном без учёта соотношения, можно сделать перепланировку комнат, чтобы пропорции соответствовали. Для этого достаточно переставить мебель или сделать дополнительную перегородку. Аналогичным образом меняется высота и длина окон и дверей.

Шкаф-перегородка


В цветовом оформлении получение упрощённого соотношения достигается за счёт 60% основного цвета, 30% — оттеняющего, и остальных 10% — усиливающих восприятие тонов.

Вариант освещения комнаты


Высота и длина мебели должна соизмеряться высотой потолков и шириной простенков.

Приложение этой нормы в интерьере, как архитектурно оформленном пространстве, объединяют с понятиями самоорганизации, рекурсии, асимметрии, красоты.


Золотая архитектура Кыргызстана

Архитектурные комплексы, которые расположены на территории Кыргызстана, занимают значительное место в истории зодчества народов Центральной Азии, соединив в себе лучшие достижения в области строительной техники, архитектуры и декоративного оформления своего времени.

  • Белый дом. Здание Жогорку Кенеш
  • Бишкекский Гуманитарный Университет имени К.Карасаева
  • Гумбез Манаса. Талас
  • Башня Бурана
  • Джалал-Абад
  • Дунганская мечеть в городе Каракол
  • Караван-сарай Таш-Рабат
  • Кыргызская Государственная Филармония имени Токтогула Сатылганова
  • Кыргызский государственный цирк имени А.Изибаева
  • Кыргызский национальный академический театр оперы и балета имени Абдыласа Малдыбаева
  • Мавзолей караханидов XI–XIIв.в.
  • Мавзолей Шах-Фазиль
  • Международный университет Кыргызстана
  • Мечеть в городе Нарын
  • Мэрия города Бишкек
  • Площадь Ала-Тоо в городе Бишкек
  • Площадь Ала-Тоо в городе Бишкек
  • Минарет в городе Узген
  • Центральный портал мавзолея караханидов XI–XII в.в.
Запомнить правило легко

Есть у пропорции правило главное

Все его знать и запомнить должны

Средние члены умножишь и крайние

Будут всегда эти числа равны.