БИЛИМ БУЛАГЫ

Химия: Классы неорганических соединений

Представленная таблица «Класификация неорганических соединений» содержит информацию о всех, изучаемых в курсе средней школы классах неорганических соединений. Вещества делятся на простые и сложные, причем простые вещества делятся на благородные газы, металлы и неметаллы. Выделение благородных газов в отдельную группу веществ, подчеркивает их исключительные свойства инертности – невозможности создавать химические связи в нормальных условиях. Типичные металлы в таблице окрашены в синий цвет, неметаллы в красный цвет. Металлы с амфотерными свойствами окрашены в фиолетовый цвет, который включает и синий и красный цвета. Свойство амфотерности – двойственности в способности к созданию химических соединений - дает возможность амфотерным неметаллами и свойства неметалла в реакциях с типичными металлами. Сложные вещества делятся на оксиды, гидроксиды и соли. Каждый класс соединений, в свою очередь, делится на виды соединений. Оксиды включают несолеобразующие, основные, амфртерные и кислотные оксиды. Гидроксиды делятся на щелочи (растворимые основания), основания, амфотерные основания и кислоты. Соли включают нормальные или средние соли, кислые, основные, комплексные или двойные, и смешанные соли. Все соединения располагаются в порядке уменьшения их реагирующей способности слева направо. Для объяснения принципов использования таблицы разработаны правила:

1) Легче всего химические реакции происходят между веществами, формулы которых окрашены в противоположные цвета – синий и красный.

2) Вещества, формулы которых окрашены в фиолетовый цвет, способны реагировать с веществами, формулы которых окрашены как в синий, так и в красный цвет.

3) Вещества, формулы которых окрашены в одинаковый цвет между собой не реагируют.

4) Оксиды реагируют с простыми веществами и гидроксидами и не могут реагировать с солями.

5) Гидроксиды реагируют с оксидами и солями.

6) Соли могут реагировать только с гидроксидами.

Для подтверждения этих правил, все названные группы веществ сгруппированы в широкие полоски. Расположение металлов, неметаллов и сложных веществ в определенном порядке подчиняется свойству активности веществ. Сохранение генетической связи элемента с его соединениями выполненное в цвете, позволяет быстро научить разбираться, какие группы веществ будут реагировать с друг с другом , а какие не будут.

Содержание

Классификация неогранических соединений.

Металлы и неметаллы. Простые и сложные вещества.

Условно все элементы делят на две группы – металлы и неметаллы.

Металлами называют элементы, обладающие способностью легко отдавать имеющиеся у них на внешнем электронном слое 1,2, 3 электрона.

Неметаллами называют элементы с 4 и более электронами на внешнем электронном слое (а также бор , у которого 3 электрона на внешнем электронном слое).

Однако среди неметаллов встречается группа элементов, которые являются газами и молекула который состоит из одного атома – это инертные или благородные газы (VIII – A группа). А среди металлов встречаются такие, соединения которых проявляют как свойства кислоты, так и свойства основания, поэтому их называют амфотерные – т.е. «двойственные».

(Сравни названия с корнем «амфос» - амфора - ваза с двумя ручками, амфибия - животное, которое дышит и в воде и на воздухе – например, лягушка).

В предлагаемой таблице элементы с металлическими свойствами и их соединения обозначены синим цветом. Элементы с неметаллическими свойствами и их соединения обозначены красным цветом. В связи с тем, что амфотерные вещества включают двойственные свойства, они обозначены фиолетовым цветом, так как фиолетовый цвет получается при смешивании красного и синего.

Все химические вещества делятся на простые и сложные.

К простым веществам относятся те, которые состоят из атомов одного химического элемента.

В зависимости от количества атомов в составе простого вещества или от различного строения кристаллической решетки, простые вещества создают различные аллотропные модификации или аллотропные видоизменения (например О2 – кислород и О3 – озон; алмаз и графит).

Вещества состоящие из атомов двух или более химических элементов называются сложными химическими веществами.

При взаимодействии двух элементов образуются бинарные соединения. При наименовании бинарных соединений, их окончание обозначается суффиксом – ид. Например: Mg3N2 – нитрид магния. Мы подробно рассмотрим наиболее важную группу бинарных соединений – оксиды.

Оксиды

Оксидами называются сложные химические вещества, состоящие из атомов двух элементов, одном из которых является кислород.

При наименования оксидов вначале указывается корень слова – окси –, затем добавляется суффикс – ид и называется элемент в родительном падеже. Например: ВаО – оксид бария. Для элементов с переменной валентностью указывается валентность элемента в составе оксида, например: СuO – оксид меди (II) или Cu2O – оксид меди (I).

Оксиды делятся на 4 группы – несолеобразующие, основные, амфотерные и кислотные.

К несолеобразующим оксидам относятся оксиды неметаллов со степенью окисления +1 и +2 (H2O, CO, SiO, NO, N2O).

К основным оксидам относятся оксиды металлов со степенью окисления +1 и +2 (K2O, Na2O, BaO, CaO, MgO, FeO, CrO, MnO, VO, PbO, SnO, CuO). Основным оксидам в качестве гидроксида соответствуют основания и растворимые основания – щелочи.

К амфотерным оксидам относятся оксиды металлов со степенью окисления +3 и +4 (Al2O3, ZnO, Fe2O3, Cr2O3, MnO2, V2O3, PbO2, SnO2)

Амфотерыми оксидам в качестве гидроксида соответствуют амфотерные основания.

К кислотным оксидам относятся оксиды неметаллов со степенью окисления +3, +4, +5, +6, +7, (Cl2O7, SO3, N2O5, P2O5, SO2,­ N2O3, P2O3, CO2,­ SiO2) (Для Cl, Br, I степень окисления также равна +1) (Cl2O), и оксиды металлов со степенью окисления +5, +6, +7 (CrO3, Mn2O7, V2O5) Кислотным оксидам в качестве гидроксида соответствуют кислоты.


Несолеобразующие оксиды

Способы получения несолеобразующих оксидов

1) Несолеобразующие оксиды получают окислением неметаллов (чаще при недостатке кислорода)

2С + О2 ArrowLeft.png 2CO

2) Несолеобразующие оксиды получают прямым синтез ( реакция происходящая в воздухе при разряде молний)

N2 +O2 t=2000 2NO — Q

3) Несолеобразующие оксиды получают при пропускании углекислого газа над раскаленным углеродом (углем)

СО2 + С ArrowleftT.png 2CO

4) Несолеобразующие оксиды получают при термическом или каталитическом разложении веществ

НСООН t, H2SO4 H2O + CO

5) Несолеобразующие оксиды получают в окислительно – восстановительных реакциях

3Cu + 8HNO3(разб) ArrowLeft.png 3Cu(NO3)2 + 2NO + 4H2O

4Mg + 10HNO3(разб) ArrowLeft.png 4Mg(NO3)2 + N2O + 5H2O


Химические свойства несолеобразующих оксидов

1) При обычной температуре вода реагирует с активными металлами.

2H2O + 2Na ArrowLeft.png 2NaOH + H2

    гидроксид натрия

2) Несолеобразующие оксиды доокисляются до кислотных оксидов с большей степенью окисления

2CO + O2 ArrowLeft.png 2CO2

2NO + O2 ArrowLeft.png 2NO2

2SiO + O2 ArrowLeft.png 2SiO2

3) Оксид углерода (II) является хорошим восстановителем для металлов

CO + FeO ArrowLeft.png Fe + CO2

2CO + SnO2 ArrowLeft.png Sn + 2CO2

Характеристика некоторых представителей несолеобразующих оксидов

CO – оксид углерода(II), угарный газ, газ без цвета, вкуса, запаха, ядовит, в концентрации 0,2% смертелен, т. к. необратимо связывается с гемоглобином крови. t кип = -192 0С, t пл. = -2030С. Горюч, содержится в табачном дыме.

N2O – оксид азота (I), «веселящий газ» – это анестезирующие вещество, растворимое в воде, тошнотворно-сладкого запаха, в смеси с кислородом употребляется как наркоз перед хирургическими операциями, при вдыхании его бывает стадия смеха, эйфории у больного. При высокой температуре разлагается:

2N2O ArrowleftT.png 2N2 +O2 +39 Ккал.

NO – оксид азота (II) – бесцветный газ, без запаха, малорастворим в воде, единственный оксид, который образуется из воздуха при разрядах молний в эндотермической реакции.

N2 +O2 t=2000 2NO — Q.

Основные оксиды

Способы получения основных оксидов

1) Основные оксиды получают при окислении металлов (без нагревания)

2Fe + O2 ArrowLeft.png 2FeO

2) Из одного основного оксида получают другой действием более активного металла

CuO + Mg ArrowLeft.png MgO +Cu

3) Основные оксиды получают частичным восстановлением амфотерных оксидов более активными металлами:

Fe2O3 + Mg ArrowLeft.png 2FeO + MgO

4) Основные оксиды получают частичным восстановлением амфотерных оксидов углеродом

Fe2O3 + C ArrowLeft.png 2FeO + CO

5) Основные оксиды получают частичным восстановлением амфотерных оксидов оксидом углерода (II)

Fe2O3 + CO ArrowLeft.png 2FeO + CO2

6) Основные оксиды получают частичным восстановлением амфотерных оксидов водородом

Fe2O3 + H2 ArrowLeft.png 2FeO + H2O

7) Основные оксиды получают частичным восстановлением кислотных оксидов металлами

CrO3 + 2Mg ArrowLeft.png CrO + 2MgO

8) Основные оксиды получают частичным восстановлением кислотных оксидов углеродом

CrO3 + 2C ArrowLeft.png CrO + 2CO

9) Основные оксиды получают частичным восстановлением кислотных оксидов оксидом углерода (II)

CrO3 + 2CO ArrowLeft.png CrO + 2CO2

10) Основные оксиды получают частичным восстановлением кислотных оксидов водородом

CrO3 + 2H2 ArrowLeft.png CrO + 2H2O

11)Основный оксид можно получить при термическом разложении нерастворимых оснований (из щелочей нельзя!)

Cu(OH)2 ArrowleftT.png CuO + H2O

12) Основные оксиды можно получить при термическом разложении солей, образованных газообразными кислотными оксидами

CaCO3 ArrowleftT.png CaO + CO2

CuSO3 ArrowleftT.png CuO + SO2


Химические свойства основных оксидов

1) Основные оксиды восстанавливаются более активными металлами

MgO + Ba ArrowLeft.png BaO + Mg

2)Основные оксиды металлов, стоящих в ряду активности за водородом, восстанавливаются водородом

CuO + H2 ArrowLeft.png Cu + H2O

Основные оксиды металлов, стоящих в ряду активности за алюминием восстанавливаются коксом ( C ) или оксидом углерода (II)

FeO + C ArrowLeft.pngFe + CO

SnO + CO ArrowLeft.png Sn + CO2

Основные оксиды металлов с переменной валентностью могут доокисляться кислородом

4FeO + O2 ArrowLeft.png 2Fe2O3

3) Основные оксиды щелочных и щелочеземельных металлов взаимодействуют с водой с образованием щелочей

Na2O + H2O ArrowLeft.png 2NaOH (Гидроксид натрия)

4) Основные оксиды взаимодействуют с амфотерными оксидам при сплавлении

Na2O + ZnO ArrowleftT.png Na2ZnO2 (Цинкат натрия)

5) Основные оксиды реагируют с кислотными оксидами с образованием солей

CaO + CO2 ArrowLeft.png CaCO3 (Карбонат кальция)

6) Основные оксиды реагируют с кислотами с образованием солей

BaO + 2HCl ArrowLeft.png BaCl2 + H2O

Хлорид бария

7) Основные оксиды реагируют с амфотерными основаниями с образованием солей

Na2O + Zn(OH)2 ArrowleftT.png Na2ZnO2 + H2O 

Цинкат натрия

8) Основные оксиды могут донейтрализовывать кислые соли

Na2O + 2NaHCO3 ArrowLeft.png 2Na2CO3 + H2O карбонат натрия

Характеристика некоторых представителей основных оксидов

CaO – оксид кальция, негашеная известь – белое твердое вещество, легко реагирующее с водой с большим выделением тепла (гашение извести), углекислым газом, tпл = 26300С.

CaO + H2O ArrowLeft.png Сa(OH)2 + Q

гидроксид кальция

CuO – Оксид меди (II) твердое хрупкое вещество черного цвета, нерастворимое в воде, при температуре свыше 800 0С разлагается до образования Cu2O – оксида меди (I), плотность 6,45 г/см3. Получают

Cu2(ОН)2CO3 ArrowleftT.png CuO + CO2 + H2O

малахит

Амфотерные оксиды

Способы получения амфотерных оксидов

1) Амфотерные оксиды получают окислением металлов

4Al + 3O2 ArrowleftT.png 2Al2O3

2) Амфотерные оксиды получают из основных оксидов доокислением металлов

4FeO + O2 ArrowleftT.png 2Fe2O3

3) Из одного амфотерного оксида получают другой действием более активного металла

Fe2O3 + 2Al ArrowLeft.png Al2O3 + 2Fe

4) Амфотерные оксиды получают частичным восстановлением кислотных оксидов

V2O5 + 2H2 ArrowLeft.png V2O3 + 2H2O Оксид ванадия(V) Оксид ванадия (III)

5) Амфотерные оксиды получают термическим разложением амфотерных оснований

Zn(OH)2 ArrowleftT.png ZnO + H2O 

6) Амфотерные оксиды получают при термическом разложении солей, образованных газообразными кислотными оксидами и амфотерными металлами

ZnCO3ArrowleftT.png ZnO + CO2

7) Амфотерные оксиды получают при термическом разложении кислых солей, образованных амфотерными металлами

2Al(HCO3)3 ArrowleftT.png Al2O3 + 6CO2 + 3H2O 


Химические свойства амфотерных оксидов

1) Амфотерные оксиды восстанавливаются до металла более активными металлами

MnO2 + 2Mg ArrowLeft.png Mn + 2MgO

2) Амфотерные оксиды металлов, стоящих в ряду активности за водородом, восстанавливаются водородом до основного оксида

Fe2O3 + H2 ArrowLeft.png 2FeO + H2O

3) Амфотерные оксиды металлов, стоящих в ряду активности за алюминием восстанавливаются до основного оксида или металла коксом (С) или оксидом углерода (II)

Fe2O3 + C ArrowLeft.png 2FeO + CO
2Fe2O3 + 3C ArrowLeft.png 4Fe + 3CO2
ZnO + CO ArrowleftT.png Zn + CO2

4) Амфотерные оксиды металлов с переменной валентностью могут доокисляться до кислотных оксидов только атомарным кислородом

Cr2O3 + 3[О] ArrowLeft.png 2CrO3

5) Амфотерные оксиды реагируют с основными оксидами при сплавлении с образованием солей

ZnO + Na2O ArrowleftT.png Na2ZnO2 (Цинкат натрия)

CaO + ZnO ArrowleftT.png СaZnO2 (Цинкат кальция)

6 ) Амфотерные оксиды реагируют с сильными кислотными оксидами с образованием солей

ZnO + N2O5 ArrowleftT.png Zn(NO3)2 (Нитрат цинка)

7) Амфотерные оксиды реагируют с основаниями с образованием солей и воды

ZnO + Сa(OН)2 ArrowleftT.png СaZnO2 + H2O

8) Амфотерные оксиды реагируют с сильными кислотами с образованием солей и воды

ZnO + 2НNO3 ArrowLeft.png Zn(NO3)2 + H2O Нитрат цинка

Характеристика некоторых представителей амфотерны оксидов

ZnO — оксид цинка-белое кристаллическое вещество, практически нерастворимое в воде, tпл = 1975 0С. Употребляется в качестве наполнителя для белой краски.


Кислотные оксиды

Способы получения кислотных оксидов

1) Кислотный оксид из металла можно получить только при окислении его атомарным кислородом в окислительно-восстановительной реакции

Cr + 3[O] ArrowLeft.png CrO3

2) Кислотный оксид можно получить из неметалла прямым окислением или горением

4P + 5O2 ArrowleftT.png 2P2O5

3) Кислотный оксид можно получить из несолеобразующего оксида доокислением

2CO + O2 ArrowleftT.png 2CO2

4) Кислотный оксид можно получить из основного оксида доокислением атомарным кислородом

CrO + 2[O] ArrowLeft.png CrO3

5) Кислотный оксид можно получить из амфотерного оксида доокислением атомарным кислородом

Cr2O3 + 3[O] ArrowLeft.png 2CrO3

6) Кислотный оксид можно получить из кислотного оксида доокислением кислородом

P2O3 + O2 ArrowLeft.png P2O5

7) Кислотный оксид можно получить при термическом разложении средних солей, образованных газообразными оксидами

CaCO3 ArrowleftT.png CaO + CO2

8) Кислотный оксид можно получить при термическом разложении кислых солей, образованных газообразными оксидами

2NaHCO3 ArrowleftT.png Na2CO3 + CO2 + H2O

карбонат натрия


Химические свойства кислотных оксидов

1) Кислотные оксиды реагируют с активными металлами

SiO2 + 2Mg ArrowLeft.png 2MgO + Si (получается аморфный кремний)

2) Кислотные оксиды реагируют с водородом

SiO2 + 2H2 ArrowLeft.png 2H2O + Si (получается аморфный кремний)

3) Кислотные оксиды реагируют с углеродом

SiO2 + C ArrowLeft.png CO2 + Si ( получается кристаллический кремний, т.к. С - кристаллическая затравка для образования кристаллов)

4) Кислотные оксиды реагируют с оксидом углерода (II)

SiO2 + 2CO ArrowLeft.png 2CO2 + Si

5) Кислотные оксиды доокисляются кислородом

P2O3 + О2 ArrowLeft.png P2O5

6) Кислотные оксиды реагируют с водой с образованием кислот

SO3 + H2O ArrowLeft.png Н2SO4 (серная кислота)

7) Кислотные оксиды реагируют с амфотерными оксидами образованием солей

N2O5 + ZnO ArrowLeft.png Zn(NO3)2 (Нитрат цинка)

8) Кислотные оксиды реагируют с щелочами с образованием солей

SO2 + NaOH ArrowLeft.png NaHSO3 (Гидросульфит натрия)

SO2 + 2NaOH ArrowLeft.png Na2SO3 + H2O Сульфит натрия

9) Кислотные оксиды реагируют с амфотерными основаниями с образованием солей и воды.

3N2O5 + Al(OH)3 ArrowLeft.png 2Al(NO3)3 + 3 H2O

нитрат алюминия

10) Более активные кислотные газообразные оксиды вытесняют менее активные газообразные оксиды из кислот и солей

H2CO3 + SO2 ArrowLeft.png H2SO3 + CO2

Угольная кислота сернистая кислота

Na2CO3 + SO2 ArrowLeft.png Na2SO3 + CO2

Карбонат натрия сульфит натрия

11) Кислотные оксиды донейтрализовывают основные соли.

N2O5 + 2Ca(OH)NO3 ArrowLeft.png 2Ca(NO3)2 + H2O

нитрат кальция

12) Более активные кислотные газообразные оксиды вытесняют менее активные газообразные оксиды из кислот и солей

H2CO3 + SO2 ArrowLeft.png H2SO3 + CO2

Na2CO3 + SO2 ArrowLeft.png Na2SO3 + CO2


Характеристика некоторых представителей кислотных оксидов

SO3 — оксид серы (IV), серный ангидрид – бесцветная летучая жидкость,tпл. 16,8 0С, получают окислением SO2 в присутствии катализатора, проявляет сильные окислительные свойства.

2SO2 + О2 ArrowleftT.png 2SO3

Р2O5 — белое гигроскопичное порошкообразное вещество, возгоняется при 359 0С, применяется как водопоглощающее средство.

Вопросы для повторения

1) Как можно получить кислотные оксиды?

2) При каких условиях образуется кристаллический кремний?

3) Из каких оксидов можно получить кислотные оксиды?

4) Какие типы реакций характерны для получения кислотных оксидов?

5) С какими веществами реагируют кислотные оксиды?

6) Где применяют оксидфосфора (V)?

7) Перечислите некоторые отрасли народного хозяйства, в которых применяются оксиды. Приведите примеры.

Задания и задачи

1) Напишите уравнения химических реакции, схемы которых даны ниже:

а) Ca → CaO → Ca(OH)2

б) Cu → CuO → CuSO4

в) P → P2O5 → H3PO4

г) P2O5 + … → Ca3(PO4)2 +…

д) N2O5 + LiOH →…

ж) SO3 +…→ K2SO4 + …

з) PH3 +… → P2O5 + H2O

2) Напишите уравнение реакции оксида фосфора (V) с водой, протекающей при нагревании, и вычислите соотношение масс элементов реагирующих в веществах.

3) Какие из перечисленных оксидов реагируют с водой: BaO, Li2O, CuO, SO3, CaO, SiO2, P2O5, Fe2O3, Al2O3, Na2O, Mn2O7? Напишите уравнение реакции.

4) Напишите формулу оксидов, гидратами которых являются следующие кислоты: H2SO4, H2SO3, H2CO3, H2SiO3, HMnO4, H3BO3.

5) Напишите молекулярные и графические формулы следующих оксидов: а) оксид хлора (V), б) оксид марганца (VII), в) оксид серы (IV),( VI), г) оксид йода (VII).

6) Назовите следующие оксиды и определите, к какому типу они относятся: MnO, MnO2, Mn2O7.

7) Получите вещества по схеме: P → P2O3 → P2O5 → H3PO

Условно все элементы делят на две группы – металлы и неметаллы.



Глассарий

Металлами называют элементы, обладающие способностью легко отдавать имеющиеся у них на внешнем электронном слое 1,2, 3 электрона.
Неметаллами называют элементы с 4 и более электронами на внешнем электронном слое ( а также бор , у которого 3 электрона на внешнем электронном слое).
Инертные или благородные газы (VIII – A группа) — это группа элементов, которые являются газами, и молекула которых состоит из одного атома.
Амфотерными металлами являются такие, соединения которых проявляют как свойства кислоты, так и свойства основания, поэтому их называют «двойственные». (Сравни названия с корнем «амфос» – амфора – ваза с двумя ручками, амфибия – животное, которое дышит и в воде и на воздухе – например, лягушка).
Простыми веществам называются такие, молекулы которых состоят из атомов одного химического элемента. В зависимости от количества атомов в составе простого вещества или от различного строения кристаллической решетки, простые вещества создают различные аллотропные модификации или аллотропные видоизменения (например О2 – кислород и О3 – озон; алмаз и графит).
Сложными химическими веществами называют вещества, состоящие из атомов двух или более химических элементов.
Бинарные соединения.состоят из атомов двух элементов. При наименовании бинарных соединений, их окончание обозначается суффиксом – ид. Например: Mg3N2 – нитрид магния.
Оксидами называются сложные химические вещества, состоящие из атомов двух элементов, одном из которых является кислород. При наименования оксидов вначале указывается корень слова – окси-, затем добавляется суффикс –ид и называется элемент в родительном падеже. Например: ВаО – оксид бария. Для элементов с переменной валентностью указывается валентность элемента в составе оксида, например: СuO –оксид меди (II) или Cu2O – оксид меди (I).
Несолеобразующими оксидам и называются оксиды неметаллов со степенью окисления +1 и +2 (H2O, CO, SiO, NO, N2O).
Основным оксидами называются оксиды металлов со степенью окисления +1 и +2 (K2O, Na2O, BaO, CaO, MgO, FeO, CrO, MnO, VO, PbO, SnO, CuO). Основным оксидам в качестве гидроксида соответствуют основания и растворимые основания – щелочи.
Амфотерными оксидам называются оксиды металлов со степенью окисления +3 и +4 (Al2O3, ZnO, Fe2O3, Cr2O3, MnO2, V2O3, PbO2, SnO2). Амфотерыми оксидам в качестве гидроксида соответствуют амфотерные основания.
Кислотными оксидам называются оксиды неметаллов со степенью окисления +3, +4, +5, +6, +7, (Cl2O7, SO3, N2O5, P2O5, SO2,­ N2O3, P2O3, CO2,­ SiO2), (Для Cl, Br, I степень окисления также равна +1) (Cl2O), и оксиды металлов со степенью окисления +5, +6, +7 (CrO3, Mn2O7, V2O5). Кислотным оксидам в качестве гидроксида соответствуют кислоты.

Полезные ссылки

Видеоурок «Качественные реакции в химии». Сайт «Видеоуроки в интернет» (Электронный ресурс). //URL:.https://www.youtube.com/watch?v=pk7UXWVBC9U&t=193s (дата обращения 07.03.18.)

Бибилиография

  • Волков В. А., Вонский Е. В., Кузнецова Г. И. Выдающиеся химики мира. — М.: Высшая школа, 1991. — 656 с. — 100 000 экз. — ISBN 5-06-001568-8. (в пер.)

Химия в лицах
Николай Александрович Меншуткин


Был одним из инициаторов основания в 1868 г. Русского химического общества (наряду с А. А. Воскресенским, Н. Н. Зининым и Д. И. Менделеевым), был его делопроизводителем (1868—1891) и первым редактором «Журнала РХО» (1869—1900). В марте 1869 г. на заседании Русского химического общества Меншуткин доложил от имени Менделеева его Периодический закон — периодическую систему элементов.

Основное направление работ Меншуткина — исследование скорости химических превращений органических соединений.

Меншуткин обнаружил влияние разбавления на скорость реакции. Эти работы Меншуткина легли в основу классической химической кинетики. В 1886—1889 гг. Меншуткин установил влияние природы растворителя и температуры на процессы образования и разложения аминов и амидов кислот. В 1890 г. установил каталитическое действие растворителей в реакциях этерификации и солеобразования.


Задачи

Какая масса углекислого газа образуется при сжигании 6 г углерода?

Правильный ответ

22 г



Какой объем кислорода выделится при разложении 5 г 10% перекиси водорода?

Правильный ответ

0,175 л



Какова масса осадка, образованного при слиянии раствора содержащего 3.4 грамма нитрата серебра и раствора содержащего 0,585 грамма хлорида натрия?

Правильный ответ

1, 435 г.



Сколько тепла выделится при горении одного заряда салюта массой 0,6 граммов, если термохимическое уравнение
2Mg + O2 ArrowLeft.png 2MgO + 1204 кДж?

Правильный ответ

15,05 кДж



Определить практический выход продукта реакции, если из 50 литров аммиака при его каталитическом окислении образовалось 30 литров оксида азота (II).

Правильный ответ

60 %