БИЛИМ БУЛАГЫ

Химия: Электролитическая диссоциация

Версия от 12:35, 20 февраля 2018; Admine2 (обсуждение | вклад) (Гидролиз солей (разложение водой))

Электролиты и неэлектролиты

Хорошо известно, что одни вещества в растворенном или расплав ленном состоянии проводят электрический ток, другие в тех же условиях ток не проводят. Это можно наблюдать с помощью простого прибора.

Прибор для определения электрической проводимости растворов
Прибор для определения электрической проводимости растворов

Он состоит из угольных стержней (электродов), присоединенных проводами к электрической сети. В цепь включена электрическая лампочка, которая показывает присутствие или отсутствие тока в цепи. Если опустить электроды в раствор сахара, то лампочка не загорается. Но она ярко загорится, если их опустить в раствор хлорида натрия. Вещества, распадающиеся на ионы в растворах или расплавах и потому проводящие электрический ток, называются электролитами. Вещества, которые в тех же условиях на ионы не распадаются и электрический ток не проводят, называются неэлектролитами. К электролитам относятся кислоты, основания и почти все соли, к неэлектролитам — большинство органических соединений.

Теория электролитической диссоциации

Для объяснения особенностей водных растворов электролитов шведским ученым С.Аррениусом в 1887 г. была предложена теория электролитической диссоциации. В дальнейшем она была развита многими учеными на основе учения о строении атомов и химической связи. Современное содержание этой теории можно свести к следующим трем положениям:

Электролитическая диссоциация раствора хлорида натрия

1. Электролиты при растворении в воде распадаются (диссоциируют) на ионы — положительные и отрицательные. Ионы находятся в более устойчивых электронных состояниях, чем атомы.

Электролитическая диссоциация раствора хлорида натрия

Они могут состоять из одного атома — это простые ионы (Na+, Mg2+, Аl3+ и т.д.) — или из нескольких атомов — это сложные ионы (NО3, SO42– , РО43– и т.д.).

2. Под действием электрического тока ионы приобретают направленное движение: положительно заряженные ионы движутся к катоду, отрицательно заряженные — к аноду. Поэтому первые называются катионами, вторые – анионами. Направленное движение ионов происходит в результате притяжения их противоположно заряженными электродами.

  • Хаотическое движение ионов
  • Направленное движение ионов
Процесс диссоциации на примере нитрата магния

3. Диссоциация — обратимый процесс: параллельно с распадом молекул на ионы (диссоциация) протекает процесс соединения ионов (ассоциация). Поэтому в уравнениях электролитической диссоциации вместо знака равенства ставят знак обратимости. Например:

Процесс диссоциации на примере нитрата магния

Механизм диссоциации

  • Существенным является вопрос о механизме электролитической диссоциации. Легче всего диссоциируют вещества с ионной связью. Как известно, эти вещества состоят из ионов. При их растворении диполи воды ориентируются вокруг положительного и отрицательного ионов. Между ионами и диполями воды возникают силы взаимного притяжения. В результате связь между ионами ослабевает, происходит переход ионов из кристалла в раствор.
  • Механизм электролитической диссоциации (растворение в воде)

Диссоциация кислот, оснований и солей в водных растворах

С помощью теории электролитической диссоциации дают определения и описывают свойства кислот, оснований и солей.

Кислотами называются электролиты, при диссоциации которых в качестве катионов образуются только катионы водорода
H3РO4 ArrowLR.png 3H+ + РO43– – фосфат ион

Диссоциация многоосновной кислоты протекает главным образом по первой ступени, в меньшей степени по второй и лишь в незначительной степени — по третьей. Поэтому в водном растворе, например, фосфорной кислоты наряду с молекулами H3РO4 имеются ионы (в последовательно уменьшающихся количествах)

H3РO4 ArrowLR.png H+ + Н2РO4¯ дигидрофосфат ион; (первая ступень)
H2РO4 ArrowLR.png H+ + НРO42– гидрофосфат ион; (вторая ступень)
РO42– ArrowLR.png H+ + РO43– фосфат ион; (третья ступень)
Основаниями называются электролиты, при диссоциации которых в качестве анионов образуются только гидроксид-ионы. Например: KOH = K + OH

Степень диссоциации

Степень диссоциации

Поскольку электролитическая диссоциация – процесс обратимый, то в растворах электролитов наряду с их ионами присутствуют и молекулы. Поэтому растворы электролитов характеризуются степенью диссоциации (обозначается греческой буквой альфа α). Степень диссоциации — это отношение числа распавшихся на ионы молекул Ni к общему числу растворенных молекул N:

Степень диссоциации

Степень диссоциации электролита определяется опытным путем и выражается в долях единицы или в процентах. Если α = 0, то диссоциация отсутствует, а если α = 1 или 100%, то электролит полностью распадается на ионы. Если же α = 20%, то это означает, что из 100 молекул данного электролита 20 распалось на ионы.

  • Сильные электролиты
  • Слабые электролиты
  • Степень диссоциации некоторых кислот в водных растворах при 18 градусах по цельсию
  • Различные электролиты имеют различную степень диссоциации. Опыт показывает, что она зависит от концентрации электролита и от температуры. С уменьшением концентрации электролита.

Реакции ионного обмена

Согласно теории электролитической диссоциации все реакции в водных растворах электролитов являются реакциями между ионами. Они называются ионными реакциями, а уравнения этих реакций — ионными уравнениями. Они проще уравнений реакций, записанных в молекулярной форме, и имеют более общий характер.

При составлении ионных уравнений реакций следует руководствоваться тем, что вещества:
  • малодиссоциированные (вода),
  • малорастворимые (выпадающие в осадок)
  • газообразные
записываются в молекулярной форме.
Пример реакций с выделением веществ

Знак стоящий при формуле вещества, обозначает, что это вещество уходит из сферы реакции в виде осадка, знак обозначает, что вещество удаляется из сферы реакции в виде газа.

Пример реакций с выделением веществ
  • Сильные электролиты, как полностью диссоциированные, записывают в виде ионов.Сумма электрических зарядов левой части уравнения должна быть равна сумме электрических зарядов правой части. Для закрепления этих положений рассмотрим пример.

    Пример реакции ионного обмена
  • Реакции ионного обмена

Ионное произведение воды. pH раствора

  • Концентрация молекул воды, учитывая её малую степень диссоциации, величина практически постоянная и составляет (1000 г/л)/(18 г/моль) = 55,56 моль/л.

    При 20 - 25 °C константа диссоциации воды равна 1,8·10−16моль/л. Так как вода является слабым электролитом ( амфолитом ), можно записать для неё константу диссоциации из, непосредственно - диссоциации воды

    K•[H2O] = [H+] [OH]

    Обозначим произведение K•[H2O] = Kв = 1,8·10−16 моль/л·55,56 моль/л = 10−14моль22 = [H+]·[OH] (при 25 °C).

  • Концентрации ионов. PH раствора
Константа Kв, равная произведению концентраций протонов и гидроксид-ионов, называется ионным произведением воды. Она является постоянной не только для чистой воды, но также и для разбавленных водных растворов веществ. C повышением температуры диссоциация воды увеличивается, следовательно, растёт и Kв, при понижении температуры – наоборот. При диссоциации воды на каждый ион Н+ образуется один ион ОН, следовательно, в чистой воде концентрации этих ионов одинаковы: [Н+] = [ОН].

Гидролиз солей (разложение водой)

Гидролиз солей – это обменное разложение солей водой.

Соль – это электролит, который диссоциирует в растворе и его ионы взаимодействуют с молекулами воды. Катионы соли получают от воды ионы OH, а анионы соли получают ионы Н+.

В процессе гидролиза образовываются электролит более слабый, недиссоциируемый, следовательно, более устойчивый, чем гидролизуемая соль. Гидролиз практически возможен лишь в том случае, если один из получаемых электролитов (кислота или основание) более слабый, чем гидролизуемая соль. Гидролиз – это процесс обратный процессу нейтрализации

Cu(OH)2+H2SO4ArrowLR.pngCuSO4+2H2O

Наиболее быстро и полно гидролиз происходит в разбавленных растворах.

По степени диссоциации все кислоты и растворимые основания (щелочи) разделяют на сильные и слабые.

Сильные кислоты: HClO4, HClO3, H2SO4, HNO3, HI, HBr, HCl.

Сильные основания (щелочи): CsOH, RbOH, KOH, NaOH, LiOH, Ba(OH)2, Sr(OH)2, Ca(OH)2.

1) Соли, образованные сильной кислотой и сильным основанием гидролизу не подвергаются. При растворении в воде они полностью диссоциируют на положительно заряженные катионы и отрицательно заряженные анионы.

2) Соли, образованные сильной кислотой и слабым основанием гидролизуются с получением кислой среды, рН≤7.

I ступень

CuCl2+HOHArrowLeft.pngCu(OH)Cl+HCl

Cu2+ + 2Cl + HOHArrowLeft.pngCuOH+ + Cl + H+ + Cl

Cu2++HOHArrowLeft.pngCuOH+ + H+

(рН < 7)

II ступень

Cu(OH) + HOH ArrowLeft.png Cu(OH)2 + HCl

CuOH+ + Cl + HOH ArrowLeft.png Cu(OH)2 + H+ + Cl

CuOH+ + HOH ArrowLeft.png Cu(OH)2 +H+

(pH ≤ 7) – кислая среда

3) Соли, образованные сильным основанием и слабой кислотой гидролизуются с получением щелочной среды, рН≥7.

I ступень

K2S + HOH ArrowLeft.png KHS + KOH

2K+ + S2– + HOH ArrowLeft.png K+ + HS + K+ + OH

S2– +HOH ArrowLeft.png HS + OH

(рН > 7)

II ступень

KHS + HOH ArrowLeft.png H2S + KOH

K+ + HS + HOH ArrowLeft.png H2S + K+ + OH

HS + HOH ArrowLeft.png H2S + OH

(pH ≥ 7) – щелочная среда

4) Соли, образованные слабым основанием и слабой кислотой гидролизуются, если соль растворима. Обычно такие соли

  • нерастворимы
  • разлагаются при растворении
(NH4)2S + 2HOH ArrowLeft.png 2NH3↑   2H2O
2NH4OH
+ H2S


2NH4+ + S2– ArrowLeft.png 2NH3 + H2S

  • при гидролизе образуется слабое основание и слабая кислота:

CH3COONH4 + HOH ArrowLeft.png CH3COOH + NH4OH

CH3COO + NH4+ + HOH ArrowLeft.png CH3COOH + NH4OH

Константа диссоциации для уксусной кислоты CH3COOH = 1,8·10-5, константа диссоциации для гидроксида аммония также равна NH4OH = 1,8·10-5. Т.е. численные показатели этих веществ равны, что говорит о получении нейтральной среды при гидролизе ацетата аммония.

(Химики обычно нюхают соль (кроме цианидов). Ацетат аммония пахнет уксусной кислотой, поэтому говорят о слабой кислотности этой соли)

Еще рассматривается летучесть аммиака, как газообразного вещества при длительном хранении вещества.

Гидролиз солей может протекать ступенчато. Количество ступеней равно валентности металла в составе соли или валентности кислотного остатка.

Пример (1):

I ступень Na3PO4 + HOH ArrowLeft.png Na2HPO4 + NaOH

3Na+ + PO43– + HOH ArrowLeft.png 2Na+ + HPO42– + Na+ + OH

PO43– + HOH ArrowLeft.png HPO42– + OH

II ступень

Na2HPO4 + HOH ArrowLeft.png NaH2PO4 + NaOH

2Na+ + HPO42–+HOH ArrowLeft.png Na+ + H2PO4– + Na+ + OH

HPO42– + HOH ArrowLeft.png H2PO4 + OH

III ступень Не идет, т.к. НРО4 – электролит средней силы

Пример (2):

I ступень

Al2(SO4)3 + 2HOH ArrowLeft.png 2Al(OH)SO4+H2SO4

2Al3+ + 3SO42– + 2HOH ArrowLeft.png 2AlOH2+ + 2SO42– + 2H+ + SO42–

2Al3+ + 2HOH ArrowLeft.png 2AlOH2+ + 2H+

II ступень

2Al(OH)SO4 + 2HOH ArrowLeft.png [Al(OH)2]2SO4 + H2SO4

2AlOH2+ + 2SO42– + 2HOH ArrowLeft.png 2Al(OH)2 + SO42– + 2H+ + SO42–

2AlOH2+ + 2HOH ArrowLeft.png 2Al(OH)2+ + 2H+

III ступень

[Al(OH)2]2SO4 + 2HOH ArrowLeft.png 2Al(OH)3 + H2SO4

2Al(OH)2+ + SO42– + 2HOH ArrowLeft.png 2Al(OH)3 + 2H+ + SO42–

2Al(OH)2+ + 2HOH ArrowLeft.png 2Al(OH)3 + 2H+

Реакция по III ступени практически не проходит. Т.к. происходит накопление ионов водорода, поэтому процесс смещается в сторону исходных веществ. Но разбавлением раствора и повышением температуры можно усилить гидролиз. Поэтому может проходить гидролиз и по III ступени.

Таким образом, гидролизуются соли если они растворимы и образованы сильным и слабым компонентами соли (катионом или анионом).

При наличии в составе соли сильного катиона, полученного из щелочи, гидролиз соли приведет к образованию щелочной среды.

Если соль образована сильной кислотой и слабым основанием, то сильный анион приведет к образованию кислой среды при гидролизе соли.

Т.е. работает закон: «Кто сильный тот и прав!».

Представленная модифицированная таблица растворимости солей ориентирована на определение рН среды, которая образуется при гидролизе соли.

Нахождение соли в определенной части таблицы описывает результат гидролиза.

Если соль находится в секторе таблицы, обозначенной буквой:

  • такая соль будет диссоциировать и не будет подвергаться гидролизу.
  • приведет к гидролизу по кислотному типу и рН будет <7.
  • то ее гидролиз пройдет по щелочному типа и рН при этом будет больше 7.
  • требует анализа: соль или нерастворима, как большинство солей в этом секторе таблицы или разлагается при растворении в воде. Если соль растворима, то обычно гидролиз приводит к образованию нейтральной среды, когда рН=7,0

Буферные растворы

Способность организма сохранять постоянство состава крови и других жидкостей происходит в результате функционирования буферных систем. В организм поступает и в нем производится множество веществ с различной кислотностью и щелочностью, но сохраняется способность изменять концентрацию ионов H+ и OH- в постоянных пределах pH = 7,37 – 7,44 для крови. Снижение или увеличение этих показателей может привести к смерти. Буферными называются растворы, обладающие способностью сохранять практически постоянное значение pH при добавлении небольших количеств кислоты или щелочи, а также при разбавлении. Буферные системы состоят из слабого основания и его соли, образованной сильной кислотой. Или из слабой кислоты и ее соли, образованной сильным основанием. Примеры: NH4OH + NH4Cl pH = 9,2 или CH3COOH + CH3COONa pH=4,7 При добавлении кислоты будут связываться ионы водорода, а при добавлении щелочи – ионы гидроксила. pH раствора изменится незначительно. Способность регулировать pH у буферных растворов регулируется буферной емкостью. Буферную емкость выражают числом молей кислоты или щелочи, которое необходимо добавить к 1 литру буферного раствора для смещения pH раствора на единицу. В каждой клетка организма работают разные буферные системы, поддерживающие постоянства внутренней среды.

Значение гидролиза

Роль и практическое применение гидролиза Обменные реакции между солями и водой широко распространены в природе.

Явление гидролиза играет огромную роль в химическом преобразовании земной коры. Многие минералы земной коры - это сульфиды металлов, которые хотя и плохо растворимы в воде, постепенно взаимодействуют с ней. Такие процессы идут и на поверхности Земли, и особенно интенсивно в ее глубинах при повышенной температуре. В результате образуется огромное количество сероводорода, который выбрасывается на поверхность при вулканической деятельности. А силикатные породы постепенно переходят в гидроксиды, а затем в оксиды металлов. В результате гидролиза минералов – алюмосиликатов – происходит разрушение горных пород.

Известный нам малахит (Cu2(OH)2CO2) – не что иное, как продукт гидролиза природных карбонатов.

В Мировом океане соли также интенсивно взаимодействуют с водой. Выносимые речной водой гидрокарбонаты кальция и магния придают морской воде слабощелочную реакцию. Именно в такой слабощелочной среде прибрежных вод рН приблизительно равно 9 наиболее интенсивно протекает фотосинтез в морских растениях и наиболее быстро развиваются морские животные. А если вспомнить о составе рН крови млекопитающих, в том числе и человека, то вы сможете не только сделать вывод о единстве животного мира на Земле но и сформулировать и некоторые гипотезы происхождении жизни на планете.

Гидролиз в народном хозяйстве

Гидролиз доставляет немало хлопот нефтяникам. Как известно, в нефти имеются примеси воды и многих солей, особенно хлоридов кальция и магния. При нагревании нефти в процессе ее переработки до 250 град. С и выше происходит интенсивное взаимодействие указанных хлоридов с водяным паром. Образующийся при этом газообразный хлороводород вступает в реакцию с металлом, из которого сделано оборудование, разрушает его, что резко увеличивает стоимость нефтепродуктов. Впрочем, на счету гидролиза немало и добрых дел. Например, образующийся при взаимодействии сульфата алюминия с водой мелкодисперсный осадок гидроксида алюминия уже несколько веков используется в качестве протравы при крашении. Оседая на ткань и прочно соединяясь с ней, гидроксид алюминия затем легко адсорбирует красители и образует весьма устойчивые красящие слои, которые выдерживают многократную стирку ткани. Без протравы качественной окраски тканей не получится. Этот же процесс используют для очистки питьевой воды и промышленных стоков: рыхлый аморфный осадок гидроксида алюминия обволакивает частички грязи и адсорбирует вредные примеси, увлекая все это на дно. Примерно таков же механизм очистки природной воды глинами, которые представляют собой соединения алюминия.

Гидролиз солей Na2CO3 Na3PO4 применяется для очистки воды и уменьшения ее жесткости.

Известкование почв с целью понижения их кислотности также основано на реакции гидролиза

CO32-+HOHArrowLR.pngHCO3-+OH+

Посредством гидролиза в промышленности из непищевого сырья (древесины, хлопковой шелухи, подсолнечной лузги, соломы вырабатывается ряд ценных продуктов: этиловый спирт, белковые дрожжи, глюкоза, сухой лед.

Гидролиз в жизни человека

В повседневной жизни мы постоянно сталкиваемся с явлением гидролиза – при стирке белья, мытье посуды, умывании мылом. Даже процессы пищеварения, в частности, расщепление жиров, протекают благодаря гидролизу.

В конце урока мы возвращаемся к стихотворению и отвечаем, почему же Ваня боялся зайти в море



Полезные ссылки

Канал Thoisoi на YouTube где вы сможете увидеть необычные эксперименты и узнать еще больше о химических элементах

Глоссарий

Аквакомплексы – комплексы, включающие в состав молекулы воды – или кристаллогидраты.


Библиография

  • Химическая энциклопедия, ред. И.Л. Кнунянц, Изд. «Советская энциклопедия», 1-5 т., М., 1988 г.
Химия в лицах

Английский торговец Бэйкер завещал свое состояние Королевскому научному обществу на выплату тому, кто прочтет «доклад о выдающемся открытии» В ноябре 1807 года Гэмфри Дэви доложил о получении калия и натрия путем разложения щелочей действием электрического тока. Позже он выделил и получил барий, магний, кальций и стронций. Дэви стал основателем электрохимии.

Он сумел доказать опьяняющее действие веселящего газа на организм.

Гемфри Дэви на портрете работы Томаса Филлипса
Гемфри Дэви на портрете работы Томаса Филлипса.

Из практических изобретений надо выделить безопасную для взрыва метана шахтерскую лампу, которой пользовались долгие годы до введения в шахтах электрического освещения.

Дэви работал в Пневматическом институте в Бристоле, и хотя у него было только среднее образование, он стал с 1802 профессором Королевского института.

В 1805 году Французская академия наук присудила ему премию в 3000 франков. В 1812 году Дэви в возрасте 34 лет за научные работы был посвящён в рыцари. Член множества научных организаций, в том числе иностранный почётный член Петербургской АН (1826 год).

В 1826 году Дэви поразил первый апоплексический удар, а 29 мая 1829 года на пути в Англию из Европы Дэви поразил второй удар, от которого он и умер на пятьдесят первом году жизни в Женеве.

Похоронен в Вестминстерском аббатстве в Лондоне, на месте захоронения выдающихся людей Англии. В его честь Лондонское Королевское общество учредило награду для учёных — медаль Дэви.

Интересные факты

1 Из 1 кг гидрида лития можно получить 2800 литров водорода, столько его содержит 40 кг баллон под давлением 120-150 атмосфер.

2 Солью, извлеченной из морской воды можно было бы засыпать всю сушу слое в 130 метров.

3 В состав жидкого мыла входит калий.

4 Каждую секунду в организме человека распадается 5000 атомов радиоактивного изотопа калия, которого в нем содержится около 0,003 грамма.

5 Сплав 76% калия и 24% натрия жидкий и затвердевает при минус 12 градусов Цельсия.

Вопросы

Попробуйте ответить правильно на пять вопросов:

1 Каким способом получают щелочные металлы?

Электролизом
Восстановлением
Выплавкой

2 Какой щелочной элемент реагирует с воздухом при обычных условиях сразу с образованием двух соединений?

Натрий
Калий
Литий

3 В какой цвет окрашивает пламя калий?

Красный
Фиолетовый
Зеленый

4 Какова валентность атомов щелочных металлов?

1
3
2

5 Какова температура плавления цезия?

27оС
28,5оС
29,5оС

Лайфхак


В этом видео вы узнаете как сварить яйца без огня.

Химия в лицах

Академик
Курнаков Николай Семенович

Kurnakov.jpg
6.12.1860, Нолинск Вятской губ. – 19.03.1941, Барвиха Московской обл.


Советский химик. Разработал физико-химический анализ растворов и сплавов металлов. Для анализа состава сплавов он создал новые методы и приборы.

Чернов
Дмитрий Константинович

Chernov.jpg
Заслуги Д. К. Чернова перед наукой огромны. Он выражал новые, передовые идеи в области металлургии.


Русский металлург. Разработал в 1868 году наилучшие условия отливки, ковки и термической обработки стали. С тех пор стальные орудия вытеснили бронзовые. Предсказал преимущества применения кислородного дутья в конвекторном процессе.

Аносов
Павел Петрович

Anosov.jpg
Павел Петрович Аносов в чине генерал-майора. Портрет 1851 года.


Русский металлург, горный инженер. Он был первым исследователем, применившим еще в 1831 году микроскоп для изучения структуры стали. Изобрел способ закалки стальных изделий в струе сжатого воздуха. Получил литую сталь и усовершенствовал многие заводские механизмы.