БИЛИМ БУЛАГЫ

Математика: Отношения и пропорции — различия между версиями

(Пропорции вокруг нас)
(Глоссарий)
Строка 181: Строка 181:
  
 
==Глоссарий==
 
==Глоссарий==
'''Отношение''' – это частное от деления одного числа на другое.
+
'''Отношение''' – это частное от деления одного числа на другое.
 +
 
 +
'''Пропорция''' – это равенство двух отношений.
 +
 
 +
'''Чи́сла Фибона́ччи''' — элементы числовой последовательности 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, …, в которой первые два числа равны либо 1 и 1, либо 0 и 1, а каждое последующее число равно сумме двух предыдущих чисел.
 +
 
 +
'''Золотое сечение''' (золотая пропорция, деление в крайнем и среднем отношении, гармоническое деление) — соотношение двух величин b и a, a > b, когда справедливо a/b = (a+b)/a. Число, равное отношению a/b, обычно обозначается прописной греческой буквой Φ, в честь древнегреческого скульптора и архитектора Фидия.Число  Φ  называется также золотым числом.
  
 
<div class="light" style="float:right;>[[#Начало|В начало]]</div><br clear=all />
 
<div class="light" style="float:right;>[[#Начало|В начало]]</div><br clear=all />
 +
 
== Библиография ==
 
== Библиография ==
 
*Видеоурок на тему «Прямая и обратная пропорциональные зависимости» http://znaika.ru/catalog/6-klass/matematika/Pryamaya-i-obratnaya-proportsionalnye-zavisimosti.html
 
*Видеоурок на тему «Прямая и обратная пропорциональные зависимости» http://znaika.ru/catalog/6-klass/matematika/Pryamaya-i-obratnaya-proportsionalnye-zavisimosti.html

Версия 06:36, 6 мая 2018

История развития учения о пропорции

         Ничто не нравится, кроме красоты, в красоте – ничто, кроме форм, в формах – ничто, 
             кроме пропорций, в пропорциях – ничто, кроме числа.
                                                           Аврелий Августин

Понятие пропорции как равенства двух отношений чисел для целых чисел было дано в глубокой древности. Еще древние вавилоняне пришли к понятию пропорциональности сторон подобных треугольников, выраженных в целых числах.

Впервые интерес к пропорции, образующейся при делении отрезка в крайнем и среднем отношении, возникает в античной науке.

Так в Древней Греции, славившейся произведениями искусства, архитектуры, различными ремеслами, успешно развивалось учение об отношениях и пропорциях. С ними связывались представления о красоте, порядке и гармонии, о созвучных аккордах в музыке. Принято считать, что понятие о делении отрезка ввел в научный обиход Пифагор, древнегреческий философ и математик. Он и его ученики рассматривали три вида пропорций:

  • Арифметическую: а - в = с - d
  • Геометрическую: a : b = c: d
  • Гармоническую: a:b = b:(a-b)

Другой древнегреческий ученый Платон сводил сущность пропорции к тому, что «для соединения двух частей с третьей совершенным образом необходима пропорция, которая бы «скрепила» их в единое целое. При этом одна часть целого должна так относиться к другой, как целое к большей части. Такая пропорция отвечает гармоническому соединению, она и является золотой».

А древнегреческий ученый Евдокс дал систематическое учение о пропорциях применительно не только к целым, но и к дробным числам. Строгая теория пропорций была построена в 3 веке до н.э. древнегреческим геометром Евклидом в его знаменитых «Началах», состоящих из 13 книг. Этой теории он посвящает 5 книг. В основу своей теории Евклид положил учение Евдокса. В настоящее время теория пропорций мало отличается от теории Евдокса – Евклида. Евклид определяет сравнение между пропорциями: отношение a : b меньше, чем отношение c : d, если есть такие числа m и n, если ma > nb и в то же время mc ≤ nd. А читается она так: «В верной пропорции произведение крайних членов равно произведению средних». Математические свойства пропорции уже тогда создавали вокруг нее ореол таинственности и мистического поклонения. Удивителен тот факт, что слово «пропорция» ввел в употребление древнеримский политический деятель Марк Ту́ллий Цицеро́н.

Он перевел на латынь платоновский термин «аналогия», который буквально означал «вновь-отношение», или, как мы говорим, «соотношение».

Основные понятия

Пропорция (лат. proportio — соразмерность, выровненность частей) – это равенство двух отношений: Пропорция a b cd.png или a:b=c:d, где a,b,c,d – не равны нулю, a и d называют крайними членами пропорции, b и c – средними членами пропорции.

Например, рассмотрим равенство 12 : 20 = 3 : 5.

Это пропорция, в которой крайние члены равны 12 и 5, а средними членами являются числа 20 и 3. Читается пропорция так: двенадцать относится к двадцати, как три относится к пяти.

Основное свойство пропорции: произведение крайних членов пропорции равно произведению её средних членов.

Это означает, что если Пропорция a b cd.png, то ad = bc.

Верно и обратное утверждение: если произведение двух чисел a и d равно произведению двух других чисел

b и   c (a≠0,b≠0,c≠0,d≠0), то из этих чисел можно составить пропорцию Пропорция a b cd.png.

Из основного свойства пропорции следует, что крайний член пропорции равен произведению средних членов, деленному на известный крайний член пропорции. А средний член пропорции равен произведению крайних членов, деленному на известный средний член пропорции.

Задачи и задания на пропорции

Задание 1. Найдите неизвестный член пропорции.

Задание 2. Из 300 читателей библиотеки 108 человек – студенты. Какой процент всех читателей составляют студенты?

Задание 3. При варке варенья используют ягоды и сахар в отношении 5:2. Сколько надо ягод, если взяли 450 грамм сахара?

  • Задание 1.gif
  • Задание 2.gif
  • Задание 3.gif

Прямая и обратная пропорциональность

Две взаимно зависимых величины называются пропорциональными, если отношение их величин сохраняется неизменным. Это постоянное отношение пропорциональных величин называется коэффициентом пропорциональности.

Пример. Масса любого вещества пропорциональна его объёму. Например, 2 литра ртути весят 27.2 кг, 5 литров весят 68 кг, 7 литров весят 95.2 кг. Отношение массы ртути к её объёму (коэффициент пропорциональности) будет равно:

Плотность ртути1.png
Плотность ртути1.png

Таким образом, коэффициентом пропорциональности в данном примере является плотность.

Пропорцианальность. Это простейший вид функциональной зависимости. Различают прямую пропорциональность. (y = kx) и обратную пропорциональность ( y= k/ x). Напр., путь S, пройденный при равномерном движении со скоростью v, пропорционален времени t, т. е. S = vt ; прямо пропорциональна величина основания y прямоугольника с заданной площадью a обратно пропорциональна высоте x, т. е. y = a/ x.

Свойства прямой пропорциональной зависимости.

1. Каждому значению х соответствует единственное определенное значение у. (первое свойство прямой пропорциональной зависимости) 2. Отношение соответствующих значений величин у и х, связанных прямой пропорциональностью, равно коэффициенту пропорциональности. 3. Если две величины связаны между собой прямой пропорциональной зависимостью, то при увеличении (уменьшении) одной из них в несколько раз значение другой увеличивается (уменьшается) во столько же раз.

Математической моделью прямой пропорциональной зависимости величин х и у является формула у = кх.

Свойства обратной пропорциональной зависимости.

1. Каждому значению х (за исключением х=0) соответствует вполне определенное значение у. 2. Произведение соответствующих значений х и у равно коэффициенту обратной пропорциональности. 3. Если х увеличивается (уменьшается) в несколько раз, то у уменьшается (увеличивается) во столько же раз, так как их произведение остается неизменным.

Если х и у связаны обратной пропорциональной зависимостью, то отношение двух любых значений величины х равно обратному отношению соответствующих значений y: x1:x2=y2:y1 .

Решение задач

Задача 1. Велосипедист, двигаясь с постоянной скоростью, проехал 5 км за 10 минут. Какой путь проедет велосипедист за 45 минут?

Задача 2. Автомобиль ехал 2 часа со скоростью 75 км/ч. За какое время он продет это же расстояние, если будет ехать со скоростью 90 км/ч?

  • Задача 1.gif
  • Задача 2.gif

Золотое сечение

         Геометрия имеет два сокровища: одно из них – Пифагорова теорема, 
            а второе – деление отрезка в среднем и крайнем отношениях... 
            Первое из них можно сравнить с мерой золота, а второе похоже на драгоценный камень. 
                                                        Иоганн Кеплер

Отрезок прямой можно разделить, как на две равные части, так и на две неравные части в любом отношении. Последнее и есть золотое деление или деление отрезка в крайнем и среднем отношении.

Золотое сечение – это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части, как сама большая часть относится к меньшей; или другими словами, меньший отрезок так относится к большему, как больший ко всему: a : b = b : c или с : b = b : а.

Деление отрезка.gif
Деление отрезка.gif

Практическое знакомство с золотым сечением начинают с деления отрезка прямой в золотой пропорции с помощью циркуля и линейки.

Отрезки золотой пропорции выражаются бесконечной иррациональной дробью AE = 0,618..., если AB принять за единицу, BE = 0,382...

Для практических целей часто используют приближенные значения 0,62 и 0,38. Если отрезок АВ принять за 100 частей, то большая часть отрезка равна 62, а меньшая – 38 частям. Свойства золотого сечения создали вокруг этого числа романтический ореол таинственности и чуть ли не мистического поклонения.

Деление отрезка прямой по золотому сечению.gif
Деление отрезка прямой по золотому сечению.gif

Существует предположение, что знание золотого деления Пифагор позаимствовал у египтян и вавилонян. И действительно, пропорции пирамиды Хеопса, храмов, барельефов, предметов быта и украшений из гробницы Тутанхамона свидетельствуют, что египетские мастера пользовались соотношениями золотого деления при их создании. Французский архитектор Шарль Эдуард Ле Корбюзье нашел, что в рельефе из храма фараона Сети I в Абидосе и в рельефе, изображающем фараона Рамзеса, пропорции фигур соответствуют величинам золотого деления. Зодчий, изображенный на рельефе деревянной доски из гробницы Хесира, держит в руках измерительные инструменты, в которых зафиксированы пропорции золотого деления. Греки были искусными геометрами. Даже арифметике обучали своих детей при помощи геометрических фигур. Квадрат Пифагора и диагональ этого квадрата были основанием для построения динамических прямоугольников.

В фасаде древнегреческого храма Парфенона присутствуют золотые пропорции. При его раскопках обнаружены циркули, которыми пользовались архитекторы и скульпторы античного мира. В циркуле, который использовали в Помпеях, также заложены пропорции золотого деления. А термин золотое сечение ввел Леонардо да Винчи (1452-1519 гг)

  • Шарль Эдуард Ле КорбюзьеШарль Эдуард Ле Корбюзье
  • Храм_фараона_Сети_IХрам_фараона_Сети_I
  • Фараон_Сети_I_и_бог_Анубис._Рельеф_из_храма_Сети_I_в_АбидосеФараон_Сети_I_и_бог_Анубис._Рельеф_из_храма_Сети_I_в_Абидосе
  • Зодчий_на_рельефе_гробницы_ХесираЗодчий_на_рельефе_гробницы_Хесира
  • ПарфенонПарфенон
  • Античный_циркульАнтичный_циркуль

Пропорциональность в природе, искусстве, архитектуре означает соблюдение определенных соотношений между размерами отдельных частей растения, скульптуры, здания и является непременным условием правильного и красивого изображения предмета.

На этой пропорции базируются основные геометрические фигуры. Прямоугольник с таким отношением сторон стали называть золотым прямоугольником. Разумеется есть и золотой треугольник. Это равнобедренный треугольник, у которого отношение длины боковой стороны к длине основания равняется 1,618.


Пропорции вокруг нас

Певучесть скрипки, красота ее голоса находится в прямой зависимости от того, в какой мере форма инструмента согласована с пропорцией золотого сечения. Анализ музыкальных произведений в диапазоне от Баха до Шостаковича продемонстрировал метрические отношения основных разделов музыкальных форм, а также золотое сечение. Таким образом, законы гармонии обнаружены в музыкальных рядах, в таблице Менделеева, в расстояниях между планетами, в микро- и макрокосмосе, во многих областях науки. Скульптура, архитектура, астрономия, биология, техника, психология и т. д. – везде так или иначе проявляет себя золотое сечение.

Полезные ссылки

Видеоурок на тему «Прямая и обратная пропорциональные зависимости» [Электронный ресурс] // Znaika URL: http://znaika.ru/catalog/6-klass/matematika/Pryamaya-i-obratnaya-proportsionalnye-zavisimosti.html (дата обращения: 24. 04. 2018)

Видеоурок на тему «Пропорции»: [Электронный ресурс] // Znaika URL: http://znaika.ru/catalog/6-klass/matematika/Proportsii.html (дата обращения: 24. 04. 2018)

Теория пропорций: [Электронный ресурс] // 2006-2018 ФГАУ ГНИИ ИТТ "Информика" URL: http://files.school-collection.edu.ru/dlrstore/c4d6841c-5a1e-ab8e-3524-e712079e89f0/00145619554921908.htm (дата обращения: 24. 04. 2018)


Глоссарий

Отношение – это частное от деления одного числа на другое.

Пропорция – это равенство двух отношений.

Чи́сла Фибона́ччи — элементы числовой последовательности 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, …, в которой первые два числа равны либо 1 и 1, либо 0 и 1, а каждое последующее число равно сумме двух предыдущих чисел.

Золотое сечение (золотая пропорция, деление в крайнем и среднем отношении, гармоническое деление) — соотношение двух величин b и a, a > b, когда справедливо a/b = (a+b)/a. Число, равное отношению a/b, обычно обозначается прописной греческой буквой Φ, в честь древнегреческого скульптора и архитектора Фидия.Число Φ называется также золотым числом.


Библиография


Применение пропорции
П

ропорция применяется везде!

P2.png


Например:

1. Пропорция в физике.

С глубокой древности люди пользовались различными рычагами. Весло, лом, весы, ножницы, качели, тачка и т.д. – примеры рычагов. Выигрыш, который дает рычаг в прилагаемом усилии, определяется пропорцией, где M и m – массы грузов, а L и l – «плечи» рычага.

P3.png


2. Пропорция в географии.

Отношение длины отрезка на карте к длине соответствующего отрезка на местности называют масштабом карты.

P4.png

3. Пропорция в музыке.

Музыкой греки называли ту часть арифметики, в которой говорится об отношениях и пропорциях. Греки создали и научную теорию. Музыки. Они знали: чем «длиннее» натянутая струна, тем «ниже» получается звук, который она издает; что короткая струна издает высокий звук. Однако у музыкального инструмента не одна, а несколько струн, и для того, чтобы все струны при игре звучали «согласно», приятно для уха, длина звучащих частей их должна быть в определенном отношении. Например, чтобы высоты звуков, издаваемых двумя струнами, различались на октаву, нужно, чтобы их длины относились как 1:2. Подобным образом квинте соответствует отношение 2:3, кварте-отношение 3:4 и т.д.

P5.png

4. Пропорции в архитектуре

Пропорции в архитектуре – это ее внутренняя красота.

ПАРФЕНОН, храм Афины Парфенос на Акрополе в Афинах, памятник древнегреческой высокой классики. Мраморный дорический периптер с ионическим скульптурным фризом (447-438 до н. э., архитекторы Иктин и Калликрат) замечателен величественной красотой форм и пропорций. Статуи фронтонов, рельефы метоп и фриза (окончены в 432 до н. э.) созданы под руководством Фидия. Разрушен в 1687; частично восстановлен. Отношение высоты здания к его длине равно 0, 618.

P6.png

5. Пропорции в скульптуре.

АПОЛЛОН БЕЛЬВЕДЕРСКИЙ, статуя Аполлона — мраморная римская копия бронзового оригинала работы древнегреческого скульптора Леохара (ок. 330-320 до н. э., Музей Пио-Клементино, Ватикан). Название от ватиканского дворца Бельведер, где выставлена статуя. Долгое время считалась вершиной греческого искусства. На рисунке представлена статуя Аполлона Бельведерского, разделенная в отношении (точка С делит отрезок АD, точка В делит отрезок АС)

P7.png



Главное правило пропорции


Есть у пропорции правило главное

Все его знать и запомнить должны

Средние члены умножишь и крайние

Будут всегда эти числа равны.