БИЛИМ БУЛАГЫ

Физика: Движение квантовых частиц — различия между версиями

(Глоссарий)
 
(не показано 75 промежуточных версий 2 участников)
Строка 1: Строка 1:
__NOTOC__
 
<div class="row mat-bg>
 
<div class="maintext math-back math-bg large-8 medium-7 columns"> <!-- Page Content -->
 
 
{{Якорь|Начало}}
 
{{Якорь|Начало}}
 +
<div class="row  phis-bg"><div class="maintext large-8 medium-7 columns"><!-- Page Content -->
 +
== Квантовая механика==
  
==Основная информация==
+
<div class="show-for-large-up">{{left|[[Файл:Kvant_physics.png|350px]]}}</div>
 +
<div class="hide-for-large-up">{{center|[[Файл:Kvant_physics.png|350px]]}}</div>
  
Примерно в то же время, когда жители древних цивилизаций научились вычислять площади различных фигур, появилась необходимость и в вычислении объемов. Эта задача в первую очередь была связана с развитием торговли и строительства. С развитием математики появилась отдельное направление – [https://ru.wikipedia.org/wiki/%D0%A1%D1%82%D0%B5%D1%80%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F стереометрия] (раздел геометрии, который занимается изучением пространственных фигур), упоминания о котором встречались уже в IV веке до нашей эры.
+
Наверняка вы много раз слышали о необъяснимых тайнах квантовой физики и квантовой механики. Её законы завораживают мистикой, и даже сами физики признаются, что до конца не понимают их. Квантовая механика — это часть квантовой физики. Почему же так сложно понять эти науки? Ответ прост: квантовая физика и квантовая механика (часть квантовой физики) изучают законы микромира. И законы эти абсолютно отличаются от законов нашего макромира, в котором мы живём. Нас окружают тела, которые мы видим, можем оценить их месторасположение, размеры, скорость и траекторию  движения. Но есть микромир, в котором мы имеем дело с совсем другими размерами объектов. Чтобы понять, с насколько малыми размерами частиц имеет дело квантовая механика, попробуем прикинуть, сколько места в пространстве занимают атомы.  Размеры атомов, так же как и масса, чрезвычайно малы и составляют около 1 нм (нанометра),  или 1 • 10−9 м. Если увеличить атом до размера точечки диаметром 0,1 мм, то буквы, которые вы сейчас читаете, станут высотой в 500 метров или полкилометра. Поэтому нам трудно представить то, что происходит с квантовыми частицами (электронами и фотонами) в микромире, как же они движутся и каким законам подчиняются.
  
Египтяне использовали эту науку в различных хозяйственных работах, при сооружении оросительных каналов, грандиозных храмов и пирамид, при высечении из гранита знаменитых сфинксов.
+
<ul class=" example-orbit" data-orbit="" data-options="animation:slide; pause_on_hover:true; animation_speed:500; navigation_arrows:true; resume_on_mouseout: true; timer_speed:4500;" >
 +
  <li class="active">
 +
    [[file:43в_Строение_атома.jpg]]
 +
  </li>
 +
<li>
 +
    [[file:43б_Атом_2.jpg]]
 +
  </li>
 +
<li>
 +
  [[file:43а_Атом_1.jpg]]
 +
  </li>
 +
<li>
 +
  [[file:43г__Атомы_разных_веществ1.jpg]]
 +
  </li>
 +
<li class="active">
 +
    [[file:43д_Электронный_микроскоп.jpg]]
 +
  </li>
 +
</ul>
  
Содержащиеся в дошедших до нас папирусах геометрические сведения и задачи почти все относятся к вычислению площадей и объемов. В них нет никаких указаний на способы вывода тех правил, которыми пользовались египтяне для вычисления длин, площадей и объёмов; часто употреблялись правила приближённых подсчётов. Высшим достижением египетской геометрии следует считать точное вычисление объёма усечённой пирамиды с квадратным основанием, содержащееся в «[https://ru.wikipedia.org/wiki/%D0%9C%D0%BE%D1%81%D0%BA%D0%BE%D0%B2%D1%81%D0%BA%D0%B8%D0%B9_%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B9_%D0%BF%D0%B0%D0%BF%D0%B8%D1%80%D1%83%D1%81 Московском папирусе]».
+
<div class="show-for-large-up">{{center|[[Файл:Animation_atom_model.mp4|450px|start=1]]}}</div>
 +
<div class="hide-for-large-up">{{center|[[Файл:Animation_atom_model.mp4|450px|start=1]]}}</div>
  
Поиск формул, позволяющих вычислять объемы различных тел, был долгим. В древнеегипетских папирусах, в вавилонских клинописных табличках встречаются правила для нахождения объема усеченной пирамиды. Определять объемы призмы, пирамиды, цилиндра и конуса умели древние греки еще задолго до [https://ru.wikipedia.org/wiki/%D0%90%D1%80%D1%85%D0%B8%D0%BC%D0%B5%D0%B4 Архимеда]. Но только он знал общий метод, позволяющий определить любую площадь или объем. Идеи Архимеда легли в основу интегрального исчисления. Сам ученый определил с помощью своего метода площади и объемы почти всех тел, которые рассматривались в античной математике. На могильной плите Архимеда, как завещал ученый, был изображен цилиндр с вписанным шаром, а эпитафия говорила о величайшем открытии Архимеда - о том, что объемы этих тел относятся как 3:2. В памятниках вавилонской и древнеегипетской архитектуры встречаются такие геометрические фигуры, как куб, параллелепипед, призма. Важнейшей задачей египетской и вавилонской геометрии было определение объема различных пространственных фигур. Эта задача отвечала необходимости строить дома, дворцы, храмы и другие сооружения. Объемы зерновых амбаров и других сооружений в виде кубов, призм и цилиндров египтяне и вавилоняне, китайцы индийцы вычисляли путем умножения площади основания на высоту. Однако древнему Востоку были известны только отдельные правила, найденные опытным путем. В более позднее время был найден общий подход к вычислению объемов многогранников.
 
{{center|[[Файл:Архимед биография легенды.jpg|650px]]}}
 
  
Все тела, которые нас окружают, имеют объём. В повседневной жизни мы часто сталкиваемся с телами разных форм и объемов. Например, мы говорим, что ведро вмещает в себя 10 литров воды. Это означает, что объем ведра - 10 литров. Другой пример: на строительство садового домика понадобилось 20 кубометров (или кубических метров) древесины. Как видно, в этих примерах объемы выражаются определенными числами, но в разных единицах - в одном случае в литрах, в другом - в кубических метрах. В разных единицах объем одного и того же тела выражается разными числами.
+
'''Объекты макромира'''. Тела, которые нас повсюду окружают, могут находиться только в одном определенном месте и в одном определенном состоянии. Но квантовая частица существует по своим законам.
  
В древности у разных народов были свои меры измерения. Так в  Киевской Руси существовала мера зерна – кадь, равная 230 кг ржи. Жидкости мерили бочками и вёдрами. В XIX веке система мер имела вид: 1 бочка = 40 ведрам, ведро = 10 штофам, 1 штоф = 2 бутылям,  бутыль = 10 чаркам.
 
  
В нашей стране существовали свои  единицы измерения. Для нахожденияы объемов сыпучих тел употребляли предметы домашнего обихода. Объемы сыпучих и жидких тел обозначались следующим образом: кыпындай — с крошку, таруудай — с зернышко проса, тырмактын агындай — с белую часть ногтя, бир чьшчым — щепотку, бир ууч — горсть, бир кочуш — пригоршню, бир кашык — с ложку, бир аяк — с чашку средней величины. У дехкан практиковалась такая единица измерения объема и веса, как байс. Она равнялась весу 100 зерен ячменя, а 100 байсов составляли 3 килограмма зерна. Когда дехкане получали, давали взаймы или продавали зерно, то считали так: 200 байсов, составлявшие 6 килограммов ячменя, принимали за единицу, называвшуюся чакса; более крупной мерой веса были 2 чаксы — бир нимшек, или 12 килограммов, бир шимек —4 чакса, или 48 килограммов. Часто зерно измеряли более простым способом: брали 100 или 200 байсов зерна, засыпали в какой-нибудь сосуд и измеряли количество зерна по высоте от дна сосуда по суставам пальцев рук. В этом случае процесс измерения проходил намного быстрее, но неточность увеличивалась.
+
<div class="show-for-large-up">{{center|[[Файл:Stroenie_atoma.mp4|400px|start=1]]}}</div>
 +
<div class="hide-for-large-up">{{center|[[Файл:Stroenie_atoma.mp4|400px|start=1]]}}</div>
  
Количество зерна измерялось также кап — мешками, которые имели разную вместимость. Самый большой кап имел высоту в рост жеребенка и назывался тай кап; его вместимость была равна одному батману пшеницы или 12 пудам. В народных эпосах упоминаются богатыри, которые за один присест могли съесть не один батман зерна:
+
==Корпускулярно-волновой дуализм==
 +
«Корпускулярно-волновой дуализм»? Он означает, двойственность природы. Это когда речь идет об очень маленьких частицах (атомах, электронах) микромира, тогда они одновременно и волны, и частицы. Свет и электроны имеют квантовую природу, являются и волнами, и частицами одновременно.
  
<div class="blocktext"><center>'''Семь батманов пшеницы за раз съел'''<br>
+
Квантовая механика говорит нам, что любая квантовая частица находится, как правило, в нескольких состояниях или в нескольких точках пространства одновременно.
  
'''Хлебом пахнущий огромный Джолой.'''</center></div>
+
<div class="textblock">{{center|Все квантовые частицы, будь то элементарные частицы или атомы или молекулы, состоящие из этих частиц, демонстрируют волнообразное поведение, так что они могут взаимодействовать друг с другом. В таком квантовом состоянии они могут проявлять любое странное квантовое поведение, такое как нахождение в двух местах одновременно, вращение в обоих направлениях одновременно, прохождение через непроницаемые барьеры или причудливые запутанные связи с отдаленными партнерами.}}</div>
  
Так что же такое объём?
+
Чем больше и массивнее тело, тем меньше волновых свойств оно имеет, и тело с массой и размерами человека или еще что-то достаточно большое и видимое невооруженным глазом будет иметь такую малую квантовую длину волны, которая не имеет измеримого эффекта. Но, если посмотреть глубже, вы можете подумать, что каждый атом в вашем теле наблюдается, или измеряется, другими атомами вокруг него, так что любые минимальные квантовые свойства, которыми он может обладать, очень быстро разрушаются.
  
'''Объём — количественная характеристика пространства, занимаемого телом или веществом'''. Объём тела или вместимость сосуда определяется его формой и линейными размерами. С понятием объёма тесно связано понятие вместимость, то есть объём внутреннего пространства сосуда, упаковочного ящика и т. п.
+
'''Объекты микромира в формате 3D, которые в реальной жизни можно рассмотреть только под микроскопом!'''
  
В формулах для обозначения объёма используется заглавная латинская буква '''V''', являющаяся сокращением от латинского '''volume''' — «объём», «наполнение».
+
<ul class=" example-orbit" data-orbit="" data-options="animation:slide; pause_on_hover:true; animation_speed:500; navigation_arrows:true; resume_on_mouseout: true; timer_speed:4500;" >
 +
  <li class="active">
 +
    [[file:Kosmicheskaya_pyl.jpeg|1000px]]
 +
  </li>
 +
<li>
 +
    [[file:Kletka1.jpeg|1000px]]
 +
  </li>
 +
<li>[[file:Virus1.jpeg|1000px]]
 +
  </li>
 +
<li>[[file:Chromosom.jpeg|1000px]]
 +
  </li>
 +
<li>[[file:Virus.jpeg|1000px]]
 +
  </li>
 +
</ul>
  
За единицу измерения объема принимается куб, ребро которого равно единице измерения отрезков. Это кубический миллиметр, кубический сантиметр, кубический дециметр, кубический метр или даже кубический километр. Часто для измерения объёма жидкости используют единицу измерения 1литр. Схема перевода одной единицы измерения объема в другую приведена ниже.
+
==Вероятностный характер положения квантовых частиц==
 +
Каждая частица (по теории вероятности) обладает шкалой вероятностей находиться в том или ином положении. И когда мы отворачиваемся, а затем снова поворачиваемся, то можем застать частицу в любом из ее возможных положений именно согласно шкале вероятности. По исследованию частицу искали в разных местах, затем прекращали наблюдать за ней, а затем снова смотрели, как изменилось ее положение. Результат был просто ошеломительным. Подведя итоги, ученые действительно смогли составить шкалу вероятностей, где может находиться та или иная частица. Эту теорию никто еще не смог опровергнуть, поэтому она является, как ни странно, самой правильной.  
  
{{center|[[Файл:Соотношения между единицами объема.gif|650px]]}}
+
<div class="show-for-large-up">{{left|[[Файл:Квантовый_эксперимент.mp4]]}}</div>
 +
<div class="hide-for-large-up">{{center|[[Файл:Квантовый_эксперимент.mp4]]}}</div>
  
Объёмы обладают следующими свойствами:
+
А вот и мультик для детей и взрослых. Рассказывает о фундаментальном эксперименте квантовой механики с 2-мя щелями и наблюдателем. В мультике обратите внимание на «глаз» наблюдателя. Он стал серьёзной  загадкой для учёных-физиков.
  
1. Объем тела есть неотрицательное число.
+
3. Хотите, чтобы информация разложилась по полочкам? Посмотрите документальный фильм, подготовленный Канадским институтом теоретической физики. В нём за 20 минут очень кратко и в хронологическом порядке вам поведают о всех открытиях квантовой физики, начиная с открытия Планка в 1900 году. А затем расскажут, какие практические разработки выполняются сейчас на базе знаний по квантовой физике: от точнейших атомных часов до суперскоростных вычислений квантового компьютера.
  
2. Равные тела имеют равные объемы
+
<div class="light" style="float:right;>[[#Начало|В начало]]</div><br clear=all />
  
3. Если тело составлено из нескольких тел, то его объем равен сумме объемов этих тел.
+
==Глоссарий==
 
+
*'''Волновая функция''' — это описание состояния квантового объекта (фотона или электрона).  
Согласно третьему свойству, чтобы найти объём прямоугольного параллелепипеда, нужно разбить его на кубы с ребром, равным единице измерения. Но такой способ измерения объёмов неудобен, поэтому применяют формулу для вычисления объёма прямоугольного параллелепипеда V=abc. Формулы для вычисления других геометрических тел немного сложнее. Несмотря на это их надо знать уметь применять при решении математических задач и в жизни. В своей практической деятельности человек часто встречается с необходимостью вычисления объёмов, например, при изготовлении каких-либо деталей или при строительстве различных сооружений. Многие строительные объекты, детали конструкций и другие предметы имеют форму геометрических тел: параллелепипедов, призм, цилиндров, шаров.
+
*'''Интерференция света''' – это «волновое» поведение света, когда на экране отображается много чередующихся ярких и тёмных вертикальных полос. Еще эти вертикальные полосы называются '''интерференционной картиной'''.
 
+
*'''Квант''' (от латинского quantum – ”сколько”) – это неделимая порция какой-то физической величины. Например, говорят — квант света, квант энергии или квант поля.
Предлагаем таблицу, в которые вошли часто используемые геометрические тела и формулы нахождения их объема. Распечатайте и используйте!
+
*'''Квантовая механика''' – это  раздел теоретической физики, составляющая квантовой теории, описывающая физические явления на самом элементарном уровне – уровне частиц.
 
+
*'''Корпускулярно-волновой дуализм''' - означает двойственность свойств. Когда речь идет об очень маленьких частицах (атомах, электронах) микромира, то они одновременно и волны, и частицы. Свет и электроны имеют квантовую природу, являются и волнами, и частицами одновременно.
{{center|[[Файл:Геометрич_тела.gif|650px]]}}
+
*'''Суперпозиция квантового объекта''' означает то, что он может находиться на 2-х или более траекториях одновременно, в 2-х или более точках одновременно.
 +
*'''Фотон''' — элементарная частица, летящая со скоростью света.
  
 
+
<div class="light" style="float:right;>[[#Начало|В начало]]</div><br clear=all />
 
 
{{center|[[Файл:2_таблицы_объем.jpg|650px]]}}
 
  
 
==Полезные ссылки==
 
==Полезные ссылки==
  
Проект "Самообразование" служит для представления знаний в понятной, ясной и краткой форме, удобной для восприятия человеком, не имеющим специальной подготовки в той или иной научной области. Здесь представлены задачи из открытого банка задач по ЕГЭ математика профильный уровень за предыдущие годы. Все задачи разбиты по темам и содержат подробное решение. Это поможет быстро сориентироваться в каталоге и выбрать для себя те темы, которые его интересуют. Вперед, к знаниям! http://self-edu.ru/math_egecats.php
+
Здесь вы найдете много полезных и нужных формул, таблиц и справочной информации. http://mozgan.ru/Geometry#block1
  
Здесь вы найдете много полезных и нужных формул, таблиц и справочной информации. А онлайн  калькулятор поможет рассчитать объем. Для расчета задайте необходимые данные. Вычисления производятся в миллиметрах, сантиметрах, метрах. Результат выводится в кубических сантиметрах, литрах и кубических метров. Попробуем?  http://mozgan.ru/Geometry#block1
+
Укротители кванта. Что день грядущий нам готовит. https://www.youtube.com/watch?v=EqAYSvxDny0
  
==Глоссарий==
+
<div class="light" style="float:right;>[[#Начало|В начало]]</div><br clear=all />
*'''Квант''' (от латинского quantum – ”сколько”) – это неделимая порция какой-то физической величины. Например, говорят — квант света, квант энергии или квант поля.
 
*'''Квантовая механика''' – это  раздел теоретической физики, составляющая квантовой теории, описывающая физические явления на самом элементарном уровне – уровне частиц.
 
*'''Корпускулярно-волновой дуализм''' - означает двойственность свойств. Когда речь идет об очень маленьких частицах (атомах, электронах) микромира, то они одновременно и волны, и частицы. Свет и электроны имеют квантовую природу, являются и волнами, и частицами одновременно.
 
*'''Интерференция света''' – это «волновое» поведение света, когда на экране отображается много чередующихся ярких и тёмных вертикальных полос. Еще эти вертикальные полосы называются интерференционной картиной.
 
*'''Суперпозиция квантового объекта''' означает то, что он может находиться на 2-х или более траекториях одновременно, в 2-х или более точках одновременно.
 
*'''Волновая функция''' — это описание состояния квантового объекта (фотона или электрона).
 
*'''Фотон''' — элементарная частица, летящая со скоростью света.
 
  
 
== Библиография ==
 
== Библиография ==
*Архимед [Электронный ресурс] : Материал из Википедии — свободной энциклопедии : Версия 88903749, сохранённая в 10:33 UTC 10 ноября 2017 / Авторы Википедии // Википедия, свободная энциклопедия. — Электрон. дан. — Сан-Франциско: Фонд Викимедиа, 2017. URL:https://ru.wikipedia.org/wiki/Архимед  (дата обращения: 20.11.2017)
+
*Квантовая механика для «чайников». https://zaochnik.ru/blog/kvantovaya-mexanika-dlya-chajnikov/  
*ЕГЭ математика. Профильный уровень. Каталог заданий по темам. : [Электронный ресурс] // Самообразование. URL: http://self-edu.ru/math_egecats.php  (дата обращения: 20.11.2017)
+
*Квантовая физика для чайников. https://blogs.elenasmodels.com/ru/kvanotaja-fizika-dlya-chainokov/
*Мозган Онлайн калькулятор. : [Электронный ресурс] // mozgan.ru. URL: http://mozgan.ru/Geometry#block1  (дата обращения: 20.11.2017)
+
*Квантовая физика простыми словами http://alenakraeva.com/new-digital-world/kvantovaya-fizika-prostymi-slovami-dlya-chajnikov/
*Системы измерения и счет у кыргызов.: [Электронный ресурс] //Open.kg Открытый Кыргызстан. URL:  https://www.open.kg/about-kyrgyzstan/culture/ethnography/1970-sistemy-izmereniya-i-schet-u-kyrgyzov.html . (дата обращения: 20.11.2017)
+
*Физика микромира  http://nuclphys.sinp.msu.ru/cur/microcosm.htm
*Как посчитать объем - формулы расчета. : [Электронный ресурс] // «ФБ», 2017. URL: http://fb.ru/article/143418/kak-poschitat-obyem---formulyi-rascheta (дата обращения: 20.11.2017)
+
*Электронные облака – орбитали http://www.alhimik.ru/teleclass/glava2/gl-2-5.shtml
*Загадки в стихах о геометрических фигурах и телах. : [Электронный ресурс] //Литературный проект "Ковдория" 2007 - 2012 URL: http://igri-uma.ru/forum/index.php?showtopic=3936 (дата обращения: 20.11.2017)
+
*https://zaochnik.ru/blog/kvantovaya-mexanika-dlya-chajnikov/
*Пирамида (геометрия) [Электронный ресурс] : Материал из Википедии — свободной энциклопедии : Версия 85954734, сохранённая в 15:42 UTC 13 июня 2017 / Авторы Википедии // Википедия, свободная энциклопедия. — Электрон. дан. — Сан-Франциско: Фонд Викимедиа, 2017. URL: https://ru.wikipedia.org/wiki/Пирамида_(геометрия) (дата обращения: 20.11.2017)
+
*http://blogs.elenasmodels.com/ru/kvanotaja-fizika-dlya-chainokov/
*Призма (геометрия) [Электронный ресурс] : Материал из Википедии — свободной энциклопедии : Версия 87437416, сохранённая в 14:58 UTC 4 сентября 2017 / Авторы Википедии // Википедия, свободная энциклопедия. — Электрон. дан. — Сан-Франциско: Фонд Викимедиа, 2017. URL: https://ru.wikipedia.org/wiki/Призма_(геометрия) (дата обращения: 20.11.2017)
 
*Куб [Электронный ресурс] : Материал из Википедии — свободной энциклопедии : Версия 88557583, сохранённая в 15:36 UTC 25 октября 2017 / Авторы Википедии // Википедия, свободная энциклопедия. — Электрон. дан. — Сан-Франциско: Фонд Викимедиа, 2017. URL: https://ru.wikipedia.org/wiki/Куб (дата обращения: 20.11.2017)
 
*Прямоугольный параллелепипед [Электронный ресурс] : Материал из Википедии — свободной энциклопедии : Версия 87981530, сохранённая в 19:25 UTC 30 сентября 2017 / Авторы Википедии // Википедия, свободная энциклопедия. — Электрон. дан. — Сан-Франциско: Фонд Викимедиа, 2017. URL: https://ru.wikipedia.org/wiki/Прямоугольный_параллелепипед  (дата обращения: 20.11.2017)
 
*Цилиндр [Электронный ресурс] : Материал из Википедии — свободной энциклопедии : Версия 85933764, сохранённая в 15:46 UTC 12 июня 2017 / Авторы Википедии // Википедия, свободная энциклопедия. — Электрон. дан. — Сан-Франциско: Фонд Викимедиа, 2017. URL:http://ru.wikipedia.org/?oldid=85933764  (дата обращения: 20.11.2017)
 
*Конус [Электронный ресурс] : Материал из Википедии — свободной энциклопедии : Версия 87095971, сохранённая в 10:39 UTC 16 августа 2017 / Авторы Википедии // Википедия, свободная энциклопедия. — Электрон. дан. — Сан-Франциско: Фонд Викимедиа, 2017. URL:https://ru.wikipedia.org/wiki/Конус.  URL:(дата обращения: 20.11.2017)
 
 
 
  
 +
<div class="light" style="float:right;>[[#Начало|В начало]]</div><br clear=all />
 
</div>
 
</div>
  
Строка 92: Строка 110:
 
<div class="shadow radius sbstyle">
 
<div class="shadow radius sbstyle">
 
<div class="row">
 
<div class="row">
<div class="large-10 small-10 large-centered small-centered columns rubric" style="background-color:lightgrey;">Это Интересно</div>
+
<div class="large-10 small-10 large-centered small-centered columns rubric" style="background-color:lightgrey;">Загадочные законы микромира</div>
 
</div>
 
</div>
<span class="firstcharacter">Р</span><p align="justify">азличные прикладные задачи на определение объема. <br>
+
<span class="firstcharacter">З</span><p align="justify">агадочные и никому не понятные законы квантовой физики – законы микромира - учёные хотят поставить на службу нашему с вами макромиру, миру, в котором мы живём. Не верится, что недавно квантовая физика была только в математических расчетах, спорах между физиками и мысленных экспериментах, а сейчас мы говорим об активном выпуске квантовых компьютеров! Одна из наиболее модных и авангардных тем физики наших дней – создание квантового компьютера, как реального прибора.
  
[[Файл:Различные прикладные задачи на определение объема.jpg|400px]]
+
Квантовый компьютер может мгновенно решать такие задачи, на решение которых даже самый современный и мощный компьютер тратит годы. Мы с вами можем стать свидетелями ещё одной технологической революции – квантовой! Выдающемуся физику Ричарду Фейнману принадлежат слова: «С уверенностью можно сказать, что никто не понимает квантовой физики». Ричард Фейнман был первым физиком, который предрёк возможность появления квантового компьютера.
  
Вернемся к проблеме: как посчитать объем перевозимых грузов. Каким является груз: фасованным или сыпучим? Каковы параметры тары? Вопросов больше, чем ответов. Немаловажным станет вопрос массы груза, поскольку транспорт отличается грузоподъемностью, а трассы – максимальным весом транспортного средства. Нарушение правил перевозки грозит штрафными санкциями.  
+
Квантовый компьютер нужен человечеству не для просмотра видео или общения в социальных сетях. С этим прекрасно справляется обычный компьютер. Квантовый компьютер нужен для решения задач, где для получения правильного ответа необходимо перебрать большое количество вариантов. Это поиск по огромным базам данных, моментальное прокладывание оптимального маршрута, подбор лекарств, создание новых материалов и множество других важных для человечества задач. В качестве наглядных примеров можно привести 2 задачи, которые в математике называются задачами рюкзака и коммивояжёра.
 +
</p>
 +
</div>
 +
<!-- Второй элемент сайдбара -->
 +
<div class="shadow  radius sbstyle" style="margin-top:20px;">
 +
<div class="row">
 +
<div class="large-10 small-10 large-centered small-centered columns rubric" style="background-color:lightgrey;">Задачи и примеры</div>
 +
</div>
  
<div class="blocktext">Задача 1. Пусть груз представляет собой прямоугольные контейнеры, заполненные товаром. Зная вес товара и контейнера, можно с легкостью определить суммарный вес. Объем контейнера определяем, как объем прямоугольного параллелепипеда. Зная грузоподъемность транспорта, его габариты, можно просчитать возможный объем перевозимого груза. Верное соотношение этих параметров позволяет избежать катастрофы, преждевременного выхода транспорта из строя. </div>
+
<div>
 +
<div class="mw-customtoggle-ppol button17">''' Задача коммивояжёра. '''</div>
 +
<div class="mw-collapsible mw-collapsed" id="mw-customcollapsible-ppol">
 +
Представьте, что вы завтра едете в отпуск и за сегодня вам надо сделать много дел, например: закончить отчёт на работе, купить маску и ласты, пообедать, постричься, забрать посылку с почты, заехать в книжный магазин и, наконец, собрать чемодан. Дел очень много, и вам надо так распланировать день, чтобы посетить все места за минимум времени. Казалось бы, простая задача. Эта задача по оптимизации перемещения по нескольким точкам в математике называется задачей коммивояжера. Поразительно, но за разумное время её невозможно решить. Если мест, немного, например, 5, то вычислить оптимальный маршрут не сложно. А если точек 15, то количество вариантов маршрутов составит 43 589 145 600. Если на оценку 1 варианта вы потратите секунду, тогда для анализа всех вариантов вы потратите 138 лет! Это всего для 15-ти точек маршрута!</div>
  
Вопрос определения объемов играет немаловажную роль в строительстве. Возведение домов, других сооружений – дело затратное, стройматериалы требуют внимательного отношения и предельно точного расчета. Основа здания – фундамент - представляет собой обычно литую конструкцию, заполняемую бетоном. Перед тем как посчитать объем бетона, необходимо определить тип фундамента. Плитный фундамент – плита в виде прямоугольного параллелепипеда. Столбчатое основание - прямоугольные или цилиндрические столбы определенного сечения. Определив объем одного столба и умножив его на количество, можно рассчитать кубатуру бетона на весь фундамент. Рассчитывая объем бетона для стен или перекрытий, поступают достаточно просто: определяют объем всей стены, умножая длину на ширину и высоту, затем отдельно определяют объемы оконных и дверных проемов. Разность объема стены и суммарного объема проемов – объем бетона.
+
<div class="mw-customtoggle-ppor button17">''' Задача рюкзака.'''</div>
 +
<div class="mw-collapsible mw-collapsed" id="mw-customcollapsible-ppor">
 +
Вот пример еще одной такой задачи. Вы, наверняка, с ней сталкивались, когда выбирали, что наиболее ценного привезти из путешествия с учетом того, что вес багажа ограничен. Не расстраивайтесь: это нетривиальная задача. Её трудно решить не только вам, но даже и мощному компьютеру. Как решить, что упаковать в рюкзак покупок на максимальную сумму. При этом, не превысить лимит веса? Для решения этой задачи, как и задачи коммивояжёра, не хватит человеческой жизни.</div>
  
Некоторые прикладные задачи требуют знаний об объеме зданий и сооружений. К ним относятся проблемы ремонта, реконструкции, определения влажности воздуха, вопросы, связанные с теплоснабжением и вентиляцией. Прежде чем ответить на вопрос о том, как посчитать объем здания, делают замеры по внешней его стороне: площади сечения (длина умножается на ширину), высоты здания от нижней части первого этажа до чердака. Определение внутренних объемов отапливаемых помещений проводят по внутренним обводкам.  
+
Задачи, подобные задаче коммивояжера и рюкзака, которые нельзя решить за разумное время, даже пользуясь самыми мощными компьютерами, называются NP-полными. Они очень важны в обычной жизни человека. Это задачи по оптимизации, от размещения товаров на полках склада ограниченного объема до выбора оптимальной стратегии капиталовложения. Теперь у человечества появилась надежда, что такие задачи будут быстро решаться с помощью квантовых компьютеров.
 +
Почему боятся появления квантового компьютера?
 +
 
 +
Большая часть криптографических технологий, например, для защиты паролей, личной переписки, финансовых транзакций, создана на том принципе, что современный компьютер не может за короткое время решить определенную задачу. Например, перемножить два числа компьютер быстро может, а вот разложить результат на простые множители ему не просто (точнее, долго).
 +
 
 +
<div class="mw-customtoggle-ppol button17">'''Пример'''</div>
 +
<div class="mw-collapsible mw-collapsed" id="mw-customcollapsible-ppol">
 +
Чтобы разложить на два множителя число из 256 цифр, самому современному компьютеру понадобилось бы несколько десятков лет. А вот квантовый компьютер по алгоритму английского математика Питера Шора эту задачу сможет решить за несколько минут. Благодаря сложности этой задачи для обычного компьютера, вы безопасно снимаете деньги в банкомате и оплачиваете покупки платежной картой. К ней, помимо пин-кода, привязано большое число. Оно делится на ваш пин-код без остатка. При вводе пина, банкомат делит ваше большое число на введенный вами пин и проверяет ответ. Для подбора правильного числа злоумышленнику понадобилось бы время, по истечении которого во Вселенной уже не осталось бы ни планеты Земля, ни платёжной карты. Но на радость всем криптографам квантовый компьютер в серийном варианте всё ещё не создан.</div>
 +
 
 +
{{center|[[Файл:Kvant_computer_1.mp4|400px|start=9]]}}
 +
 
 +
<div class="mw-customtoggle-ppop button17">'''Пример-ассоциация из нашего макромира'''</div>
 +
<div class="mw-collapsible mw-collapsed" id="mw-customcollapsible-ppop">
 +
Раскрутите на столе монетку, как юлу. Пока монетка крутиться, у нёё нет конкретного значения — орёл или решка. Но как только вы решите «измерить» это значение и прихлопните монету рукой, вот тут-то и получите конкретное состояние монеты – орёл или решка. А теперь представьте, что это монета принимает решение, какое значение вам «показать» – орёл или решка. Примерно также ведёт себя и электрон. Вот такой крутой этот квантовый объект – сам принимает решение о своём состоянии. И мы не можем заранее предсказать, какое решение он примет, когда влетит в магнитное поле, в котором мы его измеряем. Вероятность того, что он решит иметь вектор спина «вверх» или «вниз» – 50 на 50%. Но как только он решил – он находится в определённом состоянии с конкретным направлением спина. Причиной его решения является наше «измерение»!
 +
</div>
  
Современные квартиры и офисы невозможно представить без системы отопления. Основной частью систем являются батареи и соединительные трубы. Как посчитать объем системы отопления? Полный объем всех секций отопления, который указан на самом радиаторе, необходимо сложить с объемом труб. И на этом этапе встает проблема: как посчитать объем трубы. Представим, что труба – цилиндр, решение приходит само собой: используем формулу расчета объема цилиндра. В отопительных системах трубы заполняются водой, поэтому необходимо знать площадь внутреннего сечения трубы. Для этого определяем ее внутренний радиус. Формула определения площади круга известна из курса геометрии. Общая длина труб определяется по их протяженности в помещении. </p>
 
 
</div>
 
</div>
<!-- Второй элемент сайдбара -->
+
</div>
<div class="shadow radius sbstyle" style="margin-top:20px;">
+
 
 +
 
 +
<!-- третий элемент сайдбара викторины игры тесты -->
 +
<div class="shadow radius sbstyle" style="margin-top:20px;">
 
<div class="row">
 
<div class="row">
<div class="large-10 small-10 large-centered small-centered columns rubric" style="background-color:lightgrey;">Загадки</div>
+
<div class="large-10 small-10 large-centered small-centered columns rubric" style="background-color:lightgrey;">Мир электрона</div>
 
</div>
 
</div>
  
<div class="blocktext">
+
{{center|[[Файл:Что_такое_свет.png]]}}
Вопрос: «Почему сложные загадки опасны для людей?»<br>
+
 
Ответ: «Потому, что люди над ними ломают свои головы.»</div>
+
<div class="mw-collapsible mw-collapsed" style="width:400px; overflow: hidden;">
 +
'''Валерий Брюсов. Мир электрона (1922)'''
  
Разгадывать загадки – очень увлекательное занятие. Ведь они учат думать и анализировать, расширяют знания о мире, пополняют словарный запас. Загадки прекрасно развивают мышление, логику, память. И делают это непринужденно, в игровой форме. Ведь искать разгадку так весело и интересно! Ну, а поскольку в таком состоянии думать тяжело, сразу приводим ответ, надо лишь немного подождать, чтобы его увидеть.
+
Быть может, эти электроны -<br>
 +
Миры, где пять материков,<br>
 +
Искусства, знанья, войны, троны<br>
 +
И память сорока веков!<br>
  
{{center|[[Файл:1_.gif|500px]]}}<br>
+
Еще, быть может, каждый атом -<br>
+
Вселенная, где сто планет;<br>
{{center|[[Файл:2_1.gif|500px]]}}<br>
+
Там всё, что здесь, в объеме сжатом,<br>
 +
Но также то, чего здесь нет.<br>
  
{{center|[[Файл:3_2.gif|500px]]}}<br>
+
Их меры малы, но все та же<br>
+
Их бесконечность, как и здесь;<br>
{{center|[[Файл:4_3.gif|500px]]}}<br>
+
Там скорбь и страсть, как здесь, и даже<br>
 +
Там та же мировая спесь.<br>
  
{{center|[[Файл:5_4.gif|500px]]}}<br>
+
Их мудрецы, свой мир бескрайный<br>
{{center|[[Файл:6_5.gif|500px]]}}<br>
+
Поставив центром бытия,<br>
{{center|[[Файл:7_6.gif|500px]]}}<br>
+
Спешат проникнуть в искры тайны<br>
{{center|[[Файл:8_7.gif|500px]]}}<br>
+
И умствуют, как ныне я;<br>
{{center|[[Файл:9_8_.gif|500px]]}}
+
 
 +
А в миг, когда из разрушенья<br>
 +
Творятся токи новых сил,<br>
 +
Кричат, в мечтах самовнушенья,<br>
 +
Что бог свой светоч загасил!<br>
 +
</div>
 
</div>
 
</div>
 
 
<!-- третий элемент сайдбара викторины игры тесты -->
 
<!-- третий элемент сайдбара викторины игры тесты -->
 
<div class="shadow radius sbstyle" style="margin-top:20px;">
 
<div class="shadow radius sbstyle" style="margin-top:20px;">
 
<div class="row">
 
<div class="row">
<div class="large-10 small-10 large-centered small-centered columns rubric" style="background-color:lightgrey;">Лайфхак</div>
+
<div class="large-10 small-10 large-centered small-centered columns rubric" style="background-color:lightgrey;">Шутки и анекдоты</div>
 
</div>
 
</div>
 +
{{center|[[Файл:Shutka_anekdot.jpg|400px]]}}
 +
 +
На тему принципа неопределенности существует множество шуток и анекдотов.
 +
 +
Полицейский останавливает квантового физика.
  
Многие из вас скажут, как же применять на практике геометрические  формулы, если запомнить  их очень сложно, а для некоторых это просто набор букв и цифр. В этом поможет мнемотехника: каждой или нескольким единицам информации «присваивается» образ, и далее связываются данные образы. Чтобы вспомнить (воспроизвести) данную информацию, порядок действия будет обратный: вспоминаются связанные между собой образы, а затем – то, что под ними подразумевалось. Таким образом, фактически сначала мы кодируем, зашифровываем данные в форму, удобную для запоминания, а когда они нам понадобятся, мы достаем их из памяти и расшифровываем. Звучит сложно? Тогда смотрим видео ролик «Как запомнить формулы  объема»
+
- Сэр, Вы знаете, с какой скоростью двигались?
  
 +
- Нет, зато я точно знаю, где я нахожусь
  
{{center|[[Файл:Как_запомнить_формулы_объема.mp4|450px]]}}
+
 
 +
- Как там звучит та песня про квантовую механику?
 +
 
 +
- Какая?
 +
 
 +
- Там что-то про множественные реальности. И ещё о том, что наблюдатель формирует наблюдаемое.
 +
 
 +
- «Я оглянулся посмотреть, не оглянулась ли она, чтоб посмотреть, не оглянулся ли я»?
 +
 
 +
- Точно.
 +
 
 +
</div>
 +
<div class="sbstyle">
 +
<div class="row">
 +
<div class="large-10 small-10 large-centered small-centered columns rubric" style="margin-top:20px">Пройди тестирование</div>
 +
</div>
 +
 
</div>
 
</div>
 
==Игра==
 
{{#widget:Iframe
 
|url=https://learningapps.org/view3979682
 
|width=90%
 
|height=410
 
|border=0
 
}}
 
 
</div>
 
</div>
  
<div class="light" style="float:right;>[[#Начало|В начало]]</div>
+
{{lang|:KR:Физика: Кванттык бөлүкчөлөрдүн кыймылы }}
 +
[[Category:Средняя школа]]
 +
[[Category:Физика]]

Текущая версия на 09:32, 22 октября 2018

Квантовая механика

Kvant physics.png
Kvant physics.png

Наверняка вы много раз слышали о необъяснимых тайнах квантовой физики и квантовой механики. Её законы завораживают мистикой, и даже сами физики признаются, что до конца не понимают их. Квантовая механика — это часть квантовой физики. Почему же так сложно понять эти науки? Ответ прост: квантовая физика и квантовая механика (часть квантовой физики) изучают законы микромира. И законы эти абсолютно отличаются от законов нашего макромира, в котором мы живём. Нас окружают тела, которые мы видим, можем оценить их месторасположение, размеры, скорость и траекторию движения. Но есть микромир, в котором мы имеем дело с совсем другими размерами объектов. Чтобы понять, с насколько малыми размерами частиц имеет дело квантовая механика, попробуем прикинуть, сколько места в пространстве занимают атомы. Размеры атомов, так же как и масса, чрезвычайно малы и составляют около 1 нм (нанометра), или 1 • 10−9 м. Если увеличить атом до размера точечки диаметром 0,1 мм, то буквы, которые вы сейчас читаете, станут высотой в 500 метров или полкилометра. Поэтому нам трудно представить то, что происходит с квантовыми частицами (электронами и фотонами) в микромире, как же они движутся и каким законам подчиняются.

  • 43в Строение атома.jpg
  • 43б Атом 2.jpg
  • 43а Атом 1.jpg
  • 43г Атомы разных веществ1.jpg
  • 43д Электронный микроскоп.jpg


Объекты макромира. Тела, которые нас повсюду окружают, могут находиться только в одном определенном месте и в одном определенном состоянии. Но квантовая частица существует по своим законам.


Корпускулярно-волновой дуализм

«Корпускулярно-волновой дуализм»? Он означает, двойственность природы. Это когда речь идет об очень маленьких частицах (атомах, электронах) микромира, тогда они одновременно и волны, и частицы. Свет и электроны имеют квантовую природу, являются и волнами, и частицами одновременно.

Квантовая механика говорит нам, что любая квантовая частица находится, как правило, в нескольких состояниях или в нескольких точках пространства одновременно.

Все квантовые частицы, будь то элементарные частицы или атомы или молекулы, состоящие из этих частиц, демонстрируют волнообразное поведение, так что они могут взаимодействовать друг с другом. В таком квантовом состоянии они могут проявлять любое странное квантовое поведение, такое как нахождение в двух местах одновременно, вращение в обоих направлениях одновременно, прохождение через непроницаемые барьеры или причудливые запутанные связи с отдаленными партнерами.

Чем больше и массивнее тело, тем меньше волновых свойств оно имеет, и тело с массой и размерами человека или еще что-то достаточно большое и видимое невооруженным глазом будет иметь такую малую квантовую длину волны, которая не имеет измеримого эффекта. Но, если посмотреть глубже, вы можете подумать, что каждый атом в вашем теле наблюдается, или измеряется, другими атомами вокруг него, так что любые минимальные квантовые свойства, которыми он может обладать, очень быстро разрушаются.

Объекты микромира в формате 3D, которые в реальной жизни можно рассмотреть только под микроскопом!

  • Kosmicheskaya pyl.jpeg
  • Kletka1.jpeg
  • Virus1.jpeg
  • Chromosom.jpeg
  • Virus.jpeg

Вероятностный характер положения квантовых частиц

Каждая частица (по теории вероятности) обладает шкалой вероятностей находиться в том или ином положении. И когда мы отворачиваемся, а затем снова поворачиваемся, то можем застать частицу в любом из ее возможных положений именно согласно шкале вероятности. По исследованию частицу искали в разных местах, затем прекращали наблюдать за ней, а затем снова смотрели, как изменилось ее положение. Результат был просто ошеломительным. Подведя итоги, ученые действительно смогли составить шкалу вероятностей, где может находиться та или иная частица. Эту теорию никто еще не смог опровергнуть, поэтому она является, как ни странно, самой правильной.

А вот и мультик для детей и взрослых. Рассказывает о фундаментальном эксперименте квантовой механики с 2-мя щелями и наблюдателем. В мультике обратите внимание на «глаз» наблюдателя. Он стал серьёзной загадкой для учёных-физиков.

3. Хотите, чтобы информация разложилась по полочкам? Посмотрите документальный фильм, подготовленный Канадским институтом теоретической физики. В нём за 20 минут очень кратко и в хронологическом порядке вам поведают о всех открытиях квантовой физики, начиная с открытия Планка в 1900 году. А затем расскажут, какие практические разработки выполняются сейчас на базе знаний по квантовой физике: от точнейших атомных часов до суперскоростных вычислений квантового компьютера.


Глоссарий

  • Волновая функция — это описание состояния квантового объекта (фотона или электрона).
  • Интерференция света – это «волновое» поведение света, когда на экране отображается много чередующихся ярких и тёмных вертикальных полос. Еще эти вертикальные полосы называются интерференционной картиной.
  • Квант (от латинского quantum – ”сколько”) – это неделимая порция какой-то физической величины. Например, говорят — квант света, квант энергии или квант поля.
  • Квантовая механика – это раздел теоретической физики, составляющая квантовой теории, описывающая физические явления на самом элементарном уровне – уровне частиц.
  • Корпускулярно-волновой дуализм - означает двойственность свойств. Когда речь идет об очень маленьких частицах (атомах, электронах) микромира, то они одновременно и волны, и частицы. Свет и электроны имеют квантовую природу, являются и волнами, и частицами одновременно.
  • Суперпозиция квантового объекта означает то, что он может находиться на 2-х или более траекториях одновременно, в 2-х или более точках одновременно.
  • Фотон — элементарная частица, летящая со скоростью света.

Полезные ссылки

Здесь вы найдете много полезных и нужных формул, таблиц и справочной информации. http://mozgan.ru/Geometry#block1

Укротители кванта. Что день грядущий нам готовит. https://www.youtube.com/watch?v=EqAYSvxDny0


Библиография


Загадочные законы микромира
З

агадочные и никому не понятные законы квантовой физики – законы микромира - учёные хотят поставить на службу нашему с вами макромиру, миру, в котором мы живём. Не верится, что недавно квантовая физика была только в математических расчетах, спорах между физиками и мысленных экспериментах, а сейчас мы говорим об активном выпуске квантовых компьютеров! Одна из наиболее модных и авангардных тем физики наших дней – создание квантового компьютера, как реального прибора. Квантовый компьютер может мгновенно решать такие задачи, на решение которых даже самый современный и мощный компьютер тратит годы. Мы с вами можем стать свидетелями ещё одной технологической революции – квантовой! Выдающемуся физику Ричарду Фейнману принадлежат слова: «С уверенностью можно сказать, что никто не понимает квантовой физики». Ричард Фейнман был первым физиком, который предрёк возможность появления квантового компьютера. Квантовый компьютер нужен человечеству не для просмотра видео или общения в социальных сетях. С этим прекрасно справляется обычный компьютер. Квантовый компьютер нужен для решения задач, где для получения правильного ответа необходимо перебрать большое количество вариантов. Это поиск по огромным базам данных, моментальное прокладывание оптимального маршрута, подбор лекарств, создание новых материалов и множество других важных для человечества задач. В качестве наглядных примеров можно привести 2 задачи, которые в математике называются задачами рюкзака и коммивояжёра.

Задачи и примеры
Задача коммивояжёра.
Представьте, что вы завтра едете в отпуск и за сегодня вам надо сделать много дел, например: закончить отчёт на работе, купить маску и ласты, пообедать, постричься, забрать посылку с почты, заехать в книжный магазин и, наконец, собрать чемодан. Дел очень много, и вам надо так распланировать день, чтобы посетить все места за минимум времени. Казалось бы, простая задача. Эта задача по оптимизации перемещения по нескольким точкам в математике называется задачей коммивояжера. Поразительно, но за разумное время её невозможно решить. Если мест, немного, например, 5, то вычислить оптимальный маршрут не сложно. А если точек 15, то количество вариантов маршрутов составит 43 589 145 600. Если на оценку 1 варианта вы потратите секунду, тогда для анализа всех вариантов вы потратите 138 лет! Это всего для 15-ти точек маршрута!
Задача рюкзака.
Вот пример еще одной такой задачи. Вы, наверняка, с ней сталкивались, когда выбирали, что наиболее ценного привезти из путешествия с учетом того, что вес багажа ограничен. Не расстраивайтесь: это нетривиальная задача. Её трудно решить не только вам, но даже и мощному компьютеру. Как решить, что упаковать в рюкзак покупок на максимальную сумму. При этом, не превысить лимит веса? Для решения этой задачи, как и задачи коммивояжёра, не хватит человеческой жизни.

Задачи, подобные задаче коммивояжера и рюкзака, которые нельзя решить за разумное время, даже пользуясь самыми мощными компьютерами, называются NP-полными. Они очень важны в обычной жизни человека. Это задачи по оптимизации, от размещения товаров на полках склада ограниченного объема до выбора оптимальной стратегии капиталовложения. Теперь у человечества появилась надежда, что такие задачи будут быстро решаться с помощью квантовых компьютеров. Почему боятся появления квантового компьютера?

Большая часть криптографических технологий, например, для защиты паролей, личной переписки, финансовых транзакций, создана на том принципе, что современный компьютер не может за короткое время решить определенную задачу. Например, перемножить два числа компьютер быстро может, а вот разложить результат на простые множители ему не просто (точнее, долго).

Пример
Чтобы разложить на два множителя число из 256 цифр, самому современному компьютеру понадобилось бы несколько десятков лет. А вот квантовый компьютер по алгоритму английского математика Питера Шора эту задачу сможет решить за несколько минут. Благодаря сложности этой задачи для обычного компьютера, вы безопасно снимаете деньги в банкомате и оплачиваете покупки платежной картой. К ней, помимо пин-кода, привязано большое число. Оно делится на ваш пин-код без остатка. При вводе пина, банкомат делит ваше большое число на введенный вами пин и проверяет ответ. Для подбора правильного числа злоумышленнику понадобилось бы время, по истечении которого во Вселенной уже не осталось бы ни планеты Земля, ни платёжной карты. Но на радость всем криптографам квантовый компьютер в серийном варианте всё ещё не создан.
Пример-ассоциация из нашего макромира

Раскрутите на столе монетку, как юлу. Пока монетка крутиться, у нёё нет конкретного значения — орёл или решка. Но как только вы решите «измерить» это значение и прихлопните монету рукой, вот тут-то и получите конкретное состояние монеты – орёл или решка. А теперь представьте, что это монета принимает решение, какое значение вам «показать» – орёл или решка. Примерно также ведёт себя и электрон. Вот такой крутой этот квантовый объект – сам принимает решение о своём состоянии. И мы не можем заранее предсказать, какое решение он примет, когда влетит в магнитное поле, в котором мы его измеряем. Вероятность того, что он решит иметь вектор спина «вверх» или «вниз» – 50 на 50%. Но как только он решил – он находится в определённом состоянии с конкретным направлением спина. Причиной его решения является наше «измерение»!


Мир электрона
Что такое свет.png

Валерий Брюсов. Мир электрона (1922)

Быть может, эти электроны -
Миры, где пять материков,
Искусства, знанья, войны, троны
И память сорока веков!

Еще, быть может, каждый атом -
Вселенная, где сто планет;
Там всё, что здесь, в объеме сжатом,
Но также то, чего здесь нет.

Их меры малы, но все та же
Их бесконечность, как и здесь;
Там скорбь и страсть, как здесь, и даже
Там та же мировая спесь.

Их мудрецы, свой мир бескрайный
Поставив центром бытия,
Спешат проникнуть в искры тайны
И умствуют, как ныне я;

А в миг, когда из разрушенья
Творятся токи новых сил,
Кричат, в мечтах самовнушенья,
Что бог свой светоч загасил!

Шутки и анекдоты
Shutka anekdot.jpg

На тему принципа неопределенности существует множество шуток и анекдотов.

Полицейский останавливает квантового физика.

- Сэр, Вы знаете, с какой скоростью двигались?

- Нет, зато я точно знаю, где я нахожусь


- Как там звучит та песня про квантовую механику?

- Какая?

- Там что-то про множественные реальности. И ещё о том, что наблюдатель формирует наблюдаемое.

- «Я оглянулся посмотреть, не оглянулась ли она, чтоб посмотреть, не оглянулся ли я»?

- Точно.

Пройди тестирование
Пройди тестирование