БИЛИМ БУЛАГЫ

KR

Математика: Көлөм — различия между версиями

(Библиография)
Строка 10: Строка 10:
 
Биздин заманга чейинки жеткен папирустардагы геометриялык маалыматтарга таянсак, дээрлик көпчүлүгү аянтты жана көлөмдү эсептөөгө карата маселелерди камтыган. Аларда египеттиктер узундукту, аянтты жана көлөмдү эсептөө үчүн колдонгон эч кандай көрсөтмөлөр жок; анда жакындаштырылган эрежелерди көбүрөөк колдонушканын билүүгө болот. Египеттиктердин геометриясынын жогорку жетишкендиги катары “Москвадагы папирустарда” баяндагандай, негизи квадрат болгон кесилген пирамиданын көлөмүн эсептөөнү айтса болот.  
 
Биздин заманга чейинки жеткен папирустардагы геометриялык маалыматтарга таянсак, дээрлик көпчүлүгү аянтты жана көлөмдү эсептөөгө карата маселелерди камтыган. Аларда египеттиктер узундукту, аянтты жана көлөмдү эсептөө үчүн колдонгон эч кандай көрсөтмөлөр жок; анда жакындаштырылган эрежелерди көбүрөөк колдонушканын билүүгө болот. Египеттиктердин геометриясынын жогорку жетишкендиги катары “Москвадагы папирустарда” баяндагандай, негизи квадрат болгон кесилген пирамиданын көлөмүн эсептөөнү айтса болот.  
  
<div class="show-for-large-up">{{center|[[Файл:Геометрич_тела.gif|650px]]}}</div>
+
<div class="show-for-large-up">{{center|[[Файл:Геометрические_тела_кт.gif|650px]]}}</div>
<div class="hide-for-large-up">{{center|[[Файл:Геометрич_тела.gif|650px]]}}</div>
+
<div class="hide-for-large-up">{{center|[[Файл:Геометрические_тела_кт.gif|650px]]}}</div>
  
 
Ар түрдүү телолордун көлөмүн эсептөөчү формуланы табуу узак мезгилдерди талап кылган. Вавилондук балбалташ таблицасында байыркы египеттик папирустарда көрсөтүлгөндөй кесилген приамиданын көлөмүн табуу эрежелери кездешет. Байыркы гректиктер призма, приамида, цилиндр жана конустардын көлөмдөрүн таба билүүнү Архимедке чейин эле өздөштүрүшкөн. Арийне, каалагандай аянтты жана көлөмдү аныктоонун жалпы ыкмасын ал гана билген. Архимеддин идеясы интегралдык эсептөөнүн негиздеринде жаткан. Окумуштуунун өзү дээрлик антикалык математикада каралган баардык телолордун аянты жана көлөмүн өзүнүн ыкмасынын жардамы менен аныктап чыккан. Архимеддин көрүстөнүндөгү плитада окумуштуу өзү жазып калтыргандай, шардын ичиндеги цилиндрдин тартылган сүрөтү жана анын астында жазылган бул телолордун көлөмү 3:2 катышында болот деген өтө улуу Архимеддин ачылышы катары баяндалат.  Вавилондук жана байыркы египеттик архитектуралык эстеликтерде куб, параллелипипед, призма сыяктуу геометриялык фигуралар кездешет. Египеттик жана вавилондук геометрияда маанилүү маселелер болуп, мейкиндиктеги ар түрдүү фигуралардын көлөмүн аныктоо болгон. Бул маселелер үй, сарай, ибадаткана жана башка курулуштарды куруу зарылчылыгын аныктаганга жооп таап берген. Куб, призма жана цилиндр түрүндөгү буудай кампаларынын көлөмүн египеттиктер жана вавилондуктар, кытайлык тар, индиялыктар негизинин аянтын бийиктигине көбөйтүү жолу аркылуу аныкташкан. Арийне, байыркы Чыгышка гана тажрыйбалуу жол менен табылган өзүнчө эреже белгилүү болгон. Кийинчерээк гана көп грандыктардын көлөмүн эсептөөчү жалпы мамиле белгилүү болгон.  
 
Ар түрдүү телолордун көлөмүн эсептөөчү формуланы табуу узак мезгилдерди талап кылган. Вавилондук балбалташ таблицасында байыркы египеттик папирустарда көрсөтүлгөндөй кесилген приамиданын көлөмүн табуу эрежелери кездешет. Байыркы гректиктер призма, приамида, цилиндр жана конустардын көлөмдөрүн таба билүүнү Архимедке чейин эле өздөштүрүшкөн. Арийне, каалагандай аянтты жана көлөмдү аныктоонун жалпы ыкмасын ал гана билген. Архимеддин идеясы интегралдык эсептөөнүн негиздеринде жаткан. Окумуштуунун өзү дээрлик антикалык математикада каралган баардык телолордун аянты жана көлөмүн өзүнүн ыкмасынын жардамы менен аныктап чыккан. Архимеддин көрүстөнүндөгү плитада окумуштуу өзү жазып калтыргандай, шардын ичиндеги цилиндрдин тартылган сүрөтү жана анын астында жазылган бул телолордун көлөмү 3:2 катышында болот деген өтө улуу Архимеддин ачылышы катары баяндалат.  Вавилондук жана байыркы египеттик архитектуралык эстеликтерде куб, параллелипипед, призма сыяктуу геометриялык фигуралар кездешет. Египеттик жана вавилондук геометрияда маанилүү маселелер болуп, мейкиндиктеги ар түрдүү фигуралардын көлөмүн аныктоо болгон. Бул маселелер үй, сарай, ибадаткана жана башка курулуштарды куруу зарылчылыгын аныктаганга жооп таап берген. Куб, призма жана цилиндр түрүндөгү буудай кампаларынын көлөмүн египеттиктер жана вавилондуктар, кытайлык тар, индиялыктар негизинин аянтын бийиктигине көбөйтүү жолу аркылуу аныкташкан. Арийне, байыркы Чыгышка гана тажрыйбалуу жол менен табылган өзүнчө эреже белгилүү болгон. Кийинчерээк гана көп грандыктардын көлөмүн эсептөөчү жалпы мамиле белгилүү болгон.  

Версия 07:21, 20 мая 2018

Болжолдуу түрдө байыркы жашоочулардын цивилизациясында ар кандай фигуранын аянтын эсептегенди үйрөнүү мезгилинде эле кошо көлөмдү да эсептөө зарылчылыгын келип чыкса керек. Бул маселе биринчи кезекте соода-сатык жана курулуштун өнүгүүсү менен байланышта болгон. Математиканын өнүгүүсү менен кошо б.з.ч. IV кылымда эскерүүлөрдө кездештирилген өзүнчө багыт – стереометрия (тегиздиктеги фигураларды окуп-үйрөткөн геометриянын бөлүмү) пайда болгон.

Египтеттиктер бул илимди чарбачылыктын ар кандай иштери болгон: сугатка пайдаланчуу каналдарды курууда, эбегейсиз ибадаткана жана пирамидаларды курууда, гранит таштан белгилүү сфинкстерди кесүүдө колдонушкан.

Биздин заманга чейинки жеткен папирустардагы геометриялык маалыматтарга таянсак, дээрлик көпчүлүгү аянтты жана көлөмдү эсептөөгө карата маселелерди камтыган. Аларда египеттиктер узундукту, аянтты жана көлөмдү эсептөө үчүн колдонгон эч кандай көрсөтмөлөр жок; анда жакындаштырылган эрежелерди көбүрөөк колдонушканын билүүгө болот. Египеттиктердин геометриясынын жогорку жетишкендиги катары “Москвадагы папирустарда” баяндагандай, негизи квадрат болгон кесилген пирамиданын көлөмүн эсептөөнү айтса болот.

Геометрические тела кт.gif
Геометрические тела кт.gif

Ар түрдүү телолордун көлөмүн эсептөөчү формуланы табуу узак мезгилдерди талап кылган. Вавилондук балбалташ таблицасында байыркы египеттик папирустарда көрсөтүлгөндөй кесилген приамиданын көлөмүн табуу эрежелери кездешет. Байыркы гректиктер призма, приамида, цилиндр жана конустардын көлөмдөрүн таба билүүнү Архимедке чейин эле өздөштүрүшкөн. Арийне, каалагандай аянтты жана көлөмдү аныктоонун жалпы ыкмасын ал гана билген. Архимеддин идеясы интегралдык эсептөөнүн негиздеринде жаткан. Окумуштуунун өзү дээрлик антикалык математикада каралган баардык телолордун аянты жана көлөмүн өзүнүн ыкмасынын жардамы менен аныктап чыккан. Архимеддин көрүстөнүндөгү плитада окумуштуу өзү жазып калтыргандай, шардын ичиндеги цилиндрдин тартылган сүрөтү жана анын астында жазылган бул телолордун көлөмү 3:2 катышында болот деген өтө улуу Архимеддин ачылышы катары баяндалат. Вавилондук жана байыркы египеттик архитектуралык эстеликтерде куб, параллелипипед, призма сыяктуу геометриялык фигуралар кездешет. Египеттик жана вавилондук геометрияда маанилүү маселелер болуп, мейкиндиктеги ар түрдүү фигуралардын көлөмүн аныктоо болгон. Бул маселелер үй, сарай, ибадаткана жана башка курулуштарды куруу зарылчылыгын аныктаганга жооп таап берген. Куб, призма жана цилиндр түрүндөгү буудай кампаларынын көлөмүн египеттиктер жана вавилондуктар, кытайлык тар, индиялыктар негизинин аянтын бийиктигине көбөйтүү жолу аркылуу аныкташкан. Арийне, байыркы Чыгышка гана тажрыйбалуу жол менен табылган өзүнчө эреже белгилүү болгон. Кийинчерээк гана көп грандыктардын көлөмүн эсептөөчү жалпы мамиле белгилүү болгон.

Бизди курчап турган айлана-чөйрөдөгү баардык телолор көлөмгө ээ. Күнүмдүк жашообузда биз ар түрдүү форма жана көлөмдөгү телолор менен кездешебиз. Айталы, чакага 10 литр суу батат. Бул дегендик, чаканын көлөмү – 10 литр. Башка мисал: бакчадагы үйдү курууга 20 метр куб жыгач керектелет. Белгилүү болгондой, бул миалдарда көлөм кандайдыр бир сан менен туюнтулат, бирок ар түрдүү бирдиктерде, айталы, бир учурда литр менен, а башкасында кубдук метр менен. Көлөмдүн ар түрдүү бирдиктеринде ар кандай сандар менен туюнтулат.

Илгери ар түрдүү элдердин өздөрүнүн өлчөөнүн чендери болгон. Айталы, Киевдин Руста дан-эгиндер ченин – кадь менен ченешкен, ал 230 кг барабар. Суюктукту челек жана чака менен ченешкен. XIX кылымда чен системасы төмөнкүчө болгон: 1 челек = 40 чакага, 1 чака = 10 чоң кесе (идиш), 1 чоң кесе (идиш) = 2 бөтөлкө, 1 бөтөлкө = 10 чыны.

Биздин өлкөнүн өзүнүн ченөө бирдиктери болгон. Эндей телолордун көлөмүн табууда үй-тиричилик буюмдарын пайдаланышкан. Эндей жана суюк телолордун көлөмүн төмөндөгүчө аныкташкан: кыпындай, таруудай, тырмактын агындай, бир чьшчым, бир ууч, бир кочуш, бир кашык, бир аяк. Дыйкандар көлөм жана салмакты байс бирдиги менен ченешкен. Анын салмагы 100 данга барабар болгон, а 100 байс 3 килограмм данга барабар болгон. Дыйкандар данын карызга бергенде же сатканда мындайча эсептешкен: 200 байс 6 кг дан болгон, аны бирдик катары кабыл алып чакс деп аташкан, андан чоңураак салмак чени катары 2 чакс – бир нимшек же 12 килограмм, бир шимек – 4 чакс же 48 килограммды түзөт. Данды көпчүлүк учурда жөнөкөй ыкма менен эсептешкен: 100 же 200 байс данды алышкан, аны бир адашке салышкан да аны түбүнөн манжанын элиси менен ченешкен. Бул учурда ченөө процесси тезирээк болгон, бирок тактык кыйла алыс болгон.

Дандын санын кап менен да ченешкен. Эң чоң кап тайдын бою менен тең болуп, аны тай кап дешкен; анын сыйымдуулугу бир батманга же 12 пудга барабар болгон. Элдик эпостордо баатырларды бир отурумда бир батман данды жеп койгон деп эскерилет:

Жети батман эгинди бир отуруп жеп салган
Нан жыттанып алп Жолой

Көлөм деген эми эмне?

Көлөм – мейкиндиктеги телонун же нерсенин ээлеген ордунун сандык мүнөздөмөсү. Телонун көлөмү же сыйымдуулуг анын кормасы жана сызыктуу өлчөмү аркылуу аныкталат. Көлөм түшүнүгү кутуга салынган идиштин ички мейкиндигинин сыйымдуулугунун көлөмү менен байланышкан ж.б.

Формулада көлөмдү белгилөө үчүн V латын баш тамгасы колдонулат, ал латындан которгондо volume — «көлөм», «толтуруу» дегенди түшүндүрөт.

Көлөмдү ченөө бирдиги катарыкесиндини ченөө бирдигине барабар болгон куб колдонулат. Бул кубдук миллиметр, кубдук сантиметр, куюбдук дециметр, кубдук метр же кубдук килеометр болуп эсептелинет. Көпчүлүк учурда суюктуктун көлөмүн ченөө бирдиги катары 1 литр колдонулат. Бил бирдиктен башка бирдикке которуу үчүн төмөндөгү которуу схемасы келтирилген:

Соотношения между единицами объема кт.gif
Соотношения между единицами объема кт.gif

Көлөм төмөндөгүдөй касиеттерге ээ:

1. Телонун көлөмү терс эмес сан;

2. Бирдей телолор бирдей көлөмгө ээ;

3. Эгерде тело бир нече курамдан түзүлсө, анда анын көлөмү ал түзгөн телолордун көлөмдөрүнүн суммаларына барабар

Үчүнчү касиетке ылайык, тик бурчтуу параллелипипеддин көлөмүн табуу үчүн аны, кырлары ченөө бирдигине барабар болгондой кылып кубдарга бөлүү керек. Бирок мындай ыкма көлөмдү ченөөгө ыңгайсыз болот, ошондуктан тик бурчтуу параллелипипеддин көлөмүн бул формуланы колдонсо болот V=abc. Башка геометриялык фигуралардын көлөмүн табуу бир аз кыйынчылыкты жаратат. Ага карабай жашоодо математикалык маселелерди чечүүдө муну билүү керек. Адам баласы өзүнүн жашоосунда дайыма көлөмдү табууга карата ишмердикти жолуктурбай койбойт, айталы, кандайдыр бир тетикти даярдоодо же ар кандай курулуштарды курууда. Көптөгөн курулук объектилери, конструкциялык тетиктери жана башка предметтердин баары геометриялык телолор болуп саналат: параллелипипед, призма, цилиндр, шар формада.

Геометриялык телолордун көлөмүн табуудагы такай колдонууга ээ болгон формулалардын таблицасын мисал катары келтиребиз. Кагазга чыгарып алып колдонгула!

Формулы объема кт.jpg
Формулы объема кт.jpg

Глоссарий

Геометрическое тело - это «то, что имеет длину, ширину и глубину» в «Началах» Евклида, а в учебниках элементарной геометрии - «часть пространства, ограниченная своей образуемой формой».

Многогранник – геометрическое тело, ограниченное конечным числом плоских многоугольников, любые два смежные из которых не лежат в одной плоскости. Содержит углы, вершины, грани и ребра.

Конус - это тело, которое состоит из круга – основание конуса, точки, не принадлежащей плоскости этого круга, – вершины конуса и всех отрезков, соединяющих вершину конуса и точки окружности основания. Получается в результате вращения прямоугольного треугольника вокруг одного из катетов.

Куб – это прямоугольный параллелепипед с равными ребрами.

Параллелепипед – это четырехугольная призма, основаниями которой являются параллелограммы.

Пирамида - это многогранник, который состоит из многоугольника — основания пирамиды, и треугольников, имеющих общую вершину, называемых боковыми гранями пирамиды.

Призма - это многогранник, поверхность которого состоит из двух равных многоугольников и параллелограммов, имеющих общие стороны с каждым из оснований.

Тела вращения – это геометрические тела, полученные в результате вращения некоторой фигуры (обычно плоской) вокруг прямой.

Цилиндр — тело, которое состоит из двух кругов, совмещаемых параллельным переносом, и всех отрезков, соединяющих соответствующие точки этих кругов. Круги называются основаниями цилиндра, а отрезки, соединяющие соответствующие точки окружностей кругов, – образующими цилиндра. Получается в результате вращения прямоугольника вокруг одной из его сторон.

Шар - это тело, состоящее из всех точек пространства, которые находятся на расстоянии, не большем данного от данной точки. Эта точка называется центром шара, а данное расстояние – радиусом шара. Получается в результате вращения полукруга вокруг его диаметра.

Пайдалуу шилтемелер

“Өз алдынча билим алуу” долбоору тиги же бул илимий чөйрөдөгү атайын даярдыктагы жок, адам баласы кабыл алууга ыңгайлуу болгон кыска жана түшүнүктүү формада билимдерди жана түшүнүктөрдү калыптоо үчүн кызмат аткарат. Бул жерде БМЭ боюнча мурунку жылдардагы математикалык профилинин деңгээлдеги маселелердин ачык банкынын тапшырмалары коюлган. Ал өзүңөр үчүн кызыгууну жараткан темалар боюнча каталогдорду тез тандаганга мүмкүнчүлүк берет. Билимге карай, чамда! [Электрондук ресурс] // Самообразование. URL: http://self-edu.ru/math_egecats.php (кайрылуу датасы: 20.11.2017)

Бул жерден силер көптөгөн керектүү жана пайдалуу формулаларды, таблицаларды жана сурап-билүү маалыматтарды табасыңар. А онлайн калькулятор болсо көлөмдөрдү эсептөөгө жардам берет. Эсептөө үчүн керектүү сандардын берилиштерин киргизгиле. Эсептөөнү миллиметр, сантиметр жана метр менен жүргүзөт. Жыйынтыгын кубдук сантиметр, литр жана кубдук метрде чыгарып берет. Байкап көрөлүбү? [Электрондук ресурс] // mozgan.ru. URL: http://mozgan.ru/Geometry#block1(кайрылуу датасы: 20.11.2017)

Библиография

Көлөмдү табууга прикладдык маселелер
К

өлөмдү аныктоого карата ар түрдүү колдонмо тапшырмалар
Көйгөйгө келели: ташылынган жүктүн көлөмүн кантип эсептейбиз. Жүк кандай болот:таңгакталганбы же эндейби? Калыптын параметрлери кандай? Жоопторго караганда суроолору көбүрөөк. Жүктүн массасы тууралуу суроо негизги суроолордун өзөгүн түзөт, анткени унаа жүк көтөрүмдүүлүгү менен, ал эми жол болсо – унаа каражаттарынын салмагы менен айырмаланат. Жүк ташуучунун эрежени бузуусу айып тартуу коркунучун жаратат.

  • Здание в виде цветка в Китае
  • Офисное здание Kuggen Гётеборг. Швеция
  • Объем перевозимых грузов
  • Объем системы отопления дома
  • Азади Мунарасы. Тегеран. Иран
  • Расчет бетона для фундамента
  • Жылытуу системасы
1-тапшырма. Мейли, товарлар салынган жүк тик бурчтуу контейнерлерде болсун. Товарлардын жана контейнерлердин салмагын билүү менен жеңил эле жалпы көлөмүн аныктоого болот. Контейнерлердин көлөмүн тик бурчутуу параллелипипеддин көлөмү катары аныктайбыз. Жүк ташуучу унаанын көлөмүн билүү аркылуу ташылып бараткан жүктүн мүмкүн болгон көлөмүн эсептөөгө болот. Бул параметрлердин ишенимдүү катышы кырсыктын болбоосуна, унаанын алдын-ала иштен чыгуусунан куткарат.
Көлөмдү аныктоо маселеси курулушта да маанилүү ролду ойнойт

Көлөмдү аныктоо маселеси курулушта да маанилүү ролду ойнойт. Үйлөрдү башка имараттарды куруу – коромжулукка алып келчү иш, курулуш материалдарын өтө тыкаттык менен эсептөөнү талап кылат. Маселенинин негизи – пайдубалы-бетон менен толтурулган куйма конструкцияны элестетет. Алгач бетондун көлөмүн эсептөөдөн мурун пайдубалдын түрүн аныктоо зарыл. Плита пайдубалы – плита түрүдөгү тик бурчтуу параллелипипед. Мамычалуу негизи – белгилүү кесилиштеги тик бурчтуу же цилиндрдик мамыча. Бир мамычанын көлөмүн аныктоо менен жана аны санына көбөйтүп, бүт пайдубалдагы бетондун кубатырасын аныктоого болот. Дубал же шып үчүн бетондун көлөмүн эсептөөнү жөн эле жүргүзсө болот: бүт дубалдын көлөмүн узунун туурасына жана аны бийиктигине көбөйтүү менен аныктап, андан соң терезе жана эшиги бар жактарын өзүнчө аныктап. Дубалдын көлөмүнүн айырмасын жана терезе жана эшиги бар тараптын суммасы – бетондун көлөмү болот.

Айрым колдонмо маселелер имараттын жана курулуштун көлөмү жөнүндөгү билимдерди талап кылат. Ага ремонттоо, кайра конструкциялоо, абанын нымдуулугун аынктоо, жылуулук жана желдеткичке байланышкан суроолор тиешелүү. Имараттын көлөмүн эсептөөдөн мурун анын сырткы тарабына ченөө жүргүзүү керек: кесилиштердин аянттары (узунун туурасына көбөйтүп), имараттын биринчи кабаттын ылдый жагынан чатырына чейинки бийиктиги. Жылуулук бөлмөнүн ички көлөмү ички айлантмасы боюнча аныкталат.

Заманбап батирлерди жана кеңселерди жылуулук системасын элестетүү мүмкүн эмес. Системанын негизги бөлүгү болуп батарейкалар жана туташтыруучу түтүктөр эсептелинет. Жылуулук системасынын көлөмүн кантип эсептөөгө болот? Радиатордун өзүндө көрсөтүлгөн жылуулук секияларынын жалпы көлөмүн түтүктөрдүн көлөмүнө кошобуз. Бул этапта бул көйгөй: түтүктүн көлөмүн кантип эсептөө келип чыгат. Элестетели, түтүк – цилиндр, чыгарылышы өзү эле келет: цилидрдин көлөмүн табуу формуласы аркылуу. Жылуулук системада түтүк суу менен толтурулат, ошондуктан түтүктүн ички кесилишин билүү керек болот. Ал үчүн анын ички радиусун аныкташ керек. Тегеректин аянтын аныктоо формуласы геометрия курсунан белгилүү. Бөлөмөдөгү түтүктүн жалпы көлөмү анын созулган узундугу боюнча аныкталат.

</p>
Табышмактар

Суроо: «Эмнеге татаал табышмактар адамдар үчүн коркунучтуу?»

Жообу: «Себеби, анын үстүнөн адамдар баштарын катырышат.»

Табышмакты жандыруу – өтө кызыктуу. Ал ойлонгонго жана талдаганга үйрөтөт эмеспи, дүйнө таанымын жана сөз байлыгыңды кеңейтет. Табышмактар ой-жүгүртүүнү, логиканы, эсти эң сонун өнүктүрөт. Жана да аны эч кыйноо менен эмес оюндун аркасы менен. Жандырмагын табуу абдан көңүлдүү жана кызыктуу эмеспи! Демек, мындай абалда ойлонуу оор, дароо мисал келтирели, аны көрүү үчүн анча-мынча күтө туруу керек.

  • 1 слайд загадки кт.gif
  • 2 слайд загадка 1 кт.gif
  • 3 слайд загадка 2 кт.gif
  • 4 слайд загадка 3 кт.gif
  • 5 слайд загадка 4 кт.gif
  • 6 слайд загадка 5 кт.gif
  • 7 слайд загадка 6 кт.gif
  • 8 слайд загадка 7 кт .gif
  • 9 слайд загадка 8 кт.gif
Көлөмдүн формулаларын кантип эстеп калабыз

Көпчүлүгүңөр айтасыңар, геометриялык формулаларды практикада кантип колдонобуз, эгер аларды эске тутуп калуу өтө кыйын болсо, а айрымдарыңар үчүн тамга жана санариптердин тизмеги деп. Буга эске тутуу техникасы жардам берет: ар бир же бир нече бирдик маалыматтардын келбетин “менчиктештиргиле”, андан ары ошол келбеттерди байланыштырасыңар. Ал маалыматтарды кайрадан эстеш үчүн иш-аракеттердин удаалаштыгы тескери тартипте жүрүшү керек: бири-бири менен байланышкан келбеттер эске түшүрүлөт, андан соң – аны мүнөздөгөндү эстейсиңер. Ошентип, алгач биз коддойбуз, ал маалыматтарды эстегенге ыңгайлуу болгондой шифрдик коддоо менен формага келтиребиз, а бизге керек болгон учурда, биз аны эсибизден алып кайрадан коддон жандырабыз. Кыйын эле өндөнөбү? Анда “Көлөмдүн формулаларын кантип эстеп калабыз” видео ролигин көрөлү

Оюн
Ошибка в виджете Iframe: unable to write file /var/www/html/extensions/Widgets/compiled_templates/wrt67443b1c0077b7_93303501
Ушундай да болот
Шутка о юрте кт.gif